The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases

ijms-logo“The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems.

In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development.

The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development.

The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases.

This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as “C. sativa L.” or “medical cannabis”), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.”

https://pubmed.ncbi.nlm.nih.gov/34502379/

https://www.mdpi.com/1422-0067/22/17/9472

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis Seed Oil Alleviates Experimental Atherosclerosis by Ameliorating Vascular Inflammation in Apolipoprotein-E-Deficient Mice

Go to Volume 0, Issue 0“In recent decades, epidemiological, clinical, and experimental studies have demonstrated that a diet with antioxidant or anti-inflammatory function plays a central role in the prevention of atherosclerosis (AS).

The purpose of this study was to explore the effects of Cannabis seed oil (CO) administration on in vitro antioxidant capacity as well as blood lipid profiles, lipid peroxidation, inflammatory response, and endothelial cell integrity. Female ApoE-/- mice were fed a high-cholesterol diet and administrated with CO or phosphate-buffered saline (PBS) and seal oil by gavage for 8 weeks.

The results show that CO administration reduced the levels of serum triglycerides and low-density lipoprotein cholesterol at week 6. Additionally, a decrease in serum tumor necrosis factor α and nitric oxide was also observed. Moreover, results from CD31 staining and scanning electron microscopy revealed that CO treatment alleviated the endothelial cell damage and lipid deposition induced by a high-cholesterol diet. The ratio of lesion area to the total aorta area was 19.57% for the CO group, which was lower than the PBS control group (24.67%).

Collectively, CO exerted anti-atherosclerotic effects by modulating serum lipid profiles and inflammatory responses and improving endothelial cell integrity and arterial lipid deposition. The results provide a promising preventive strategy for the early progression of AS.”

https://pubmed.ncbi.nlm.nih.gov/34037390/

https://pubs.acs.org/doi/10.1021/acs.jafc.0c07251

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis sativa extracts protect LDL from Cu 2+-mediated oxidation

See the source image“Multiple therapeutic properties have been attributed to Cannabis sativa. However, further research is required to unveil the medicinal potential of Cannabis and the relationship between biological activity and chemical profile.

Objectives: The primary objective of this study was to characterize the chemical profile and antioxidant properties of three varieties of Cannabis sativa available in Uruguay during progressive stages of maturation.

Results: The main cannabinoids in the youngest inflorescences were tetrahydrocannabinolic acid (THC-A, 242 ± 62 mg/g) and tetrahydrocannabinol (THC, 7.3 ± 6.5 mg/g). Cannabinoid levels increased more than twice in two of the mature samples. A third sample showed a lower and constant concentration of THC-A and THC (177 ± 25 and 1 ± 1, respectively). The THC-A/THC rich cannabis extracts increased the latency phase of LDL oxidation by a factor of 1.2-3.5 per μg, and slowed down the propagation phase of lipoperoxidation (IC50 1.7-4.6 μg/mL). Hemp, a cannabidiol (CBD, 198 mg/g) and cannabidiolic acid (CBD-A, 92 mg/g) rich variety, also prevented the formation of conjugated dienes during LDL oxidation. In fact, 1 μg of extract was able to stretch the latency phase 3.7 times and also to significantly reduce the steepness of the propagation phase (IC50 of 8 μg/mL). Synthetic THC lengthened the duration of the lag phase by a factor of 21 per μg, while for the propagation phase showed an IC50 ≤ 1 μg/mL. Conversely, THC-A was unable to improve any parameter. Meanwhile, the presence of 1 μg of pure CBD and CBD-A increased the initial latency phase 4.8 and 9.4 times, respectively, but did not have an effect on the propagation phase.

Conclusion: Cannabis whole extracts acted on both phases of lipid oxidation in copper challenged LDL. Those effects were just partially related with the content of cannabinoids and partially recapitulated by isolated pure cannabinoids. Our results support the potentially beneficial effects of cannabis sativa whole extracts on the initial phase of atherosclerosis.”

https://pubmed.ncbi.nlm.nih.gov/33123676/

“Our findings support the beneficial effects of Cannabis sativa extracts on the initial phase of atherosclerosis. Since isolated cannabinoids were less effective preventing the oxidation of LDL, a synergistic effect between the diverse arrange of phytochemicals present in complex extracts is supported, reinforcing the entourage hypothesis and the use of whole medicinal cannabis extracts for therapeutic purposes.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-020-00042-0

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Association between marijuana use and electrocardiographic abnormalities by middle age The Coronary Artery Risk Development in Young Adults (CARDIA) Study

 Addiction

“Aims

To evaluate the prevalence of electrocardiogram (ECG) abnormalities in marijuana users as an indirect measure of subclinical cardiovascular disease (CVD).

Findings

Among the 2,585 participants with an ECG at Year 20, mean age was 46, 57% were women, 45% were black. 83% had past exposure to marijuana and 11% were using marijuana currently. One hundred and seventy‐three participants (7%) had major abnormalities and 944 (37%) had minor abnormalities. Comparing current with never use in multivariable‐adjusted models, the OR for major ECG abnormalities was 0.60 (95% CI: 0.32 to 1.15) and for minor ECG abnormalities 1.21 (95% CI: 0.87 to 1.68). Results did not change after stratifying by sex and race.

Cumulative marijuana use was not associated with ECG abnormalities.

Conclusion

In a middle‐aged US population, lifetime cumulative and occasional current marijuana use were not associated with increases in electrocardiogram abnormalities. This adds to the growing body of evidence that occasional marijuana use and cardiovascular disease events and markers of subclinical atherosclerosis are not associated.”

https://onlinelibrary.wiley.com/doi/abs/10.1111/add.15188?af=R

“Using cannabis not associated with heart abnormalities at middle age: study”  https://leaderpost.com/wellness/using-cannabis-not-associated-with-heart-abnormalities-at-middle-age-study/wcm/a43cafba-42b3-4b74-9ea7-50a2cf0d62e3/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Impact of Cannabinoid Receptor 2 Deficiency on Neutrophil Recruitment and Inflammation.

View details for DNA and Cell Biology cover image“Neutrophil trafficking into damaged or infected tissues is essential for the initiation of inflammation, clearance of pathogens and damaged cells, and ultimately tissue repair. Neutrophil recruitment is highly dependent on the stepwise induction of adhesion molecules and promigratory chemokines and cytokines.

A number of studies in animal models have shown the efficacy of cannabinoid receptor 2 (CB2) agonists in limiting inflammation in a range of preclinical models of inflammation, including colitis, atherosclerosis, multiple sclerosis, and ischemia-reperfusion injury.

Recent work in preclinical models of inflammation raises two questions: by what mechanisms do CB2 agonists provide anti-inflammatory effects during acute inflammation and what challenges exist in the translation of CB2 modulating therapeutics into the clinic.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Role of the endocannabinoidome in human and mouse atherosclerosis.

“The Endocannabinoid (eCB) system and its role in many physiological and pathological conditions is well described and accepted, and includes cardiovascular disorders. However, the eCB system has been expanded to an “-ome”; the endocannabinoidome (eCBome) that includes endocannabinoid-related mediators, their protein targets and metabolic enzymes, many of which significantly impact upon cardiometabolic health. These recent discoveries are here summarized with a special focus on their potential involvement in atherosclerosis. We described the role of classical components of the eCB system (eCBs, CB1 and CB2 receptors) and eCB-related lipids, their regulatory enzymes and molecular targets in atherosclerosis. Furthermore, since increasing evidence points to significant cross-talk between the eCBome and the gut microbiome and the gut microbiome and atherosclerosis, we explore the possibility that a gut microbiome – eCBome axis has potential implications in atherosclerosis.”

https://www.ncbi.nlm.nih.gov/pubmed/31448709

http://www.eurekaselect.com/174465/article

“Oral cannabinoid therapy reduces progression of atherosclerosis”  https://www.medscape.com/viewarticle/787468

“The active ingredient in marijuana that produces changes in brain messages appears to fight atherosclerosis — a hardening of the arteries.” https://www.webmd.com/heart-disease/news/20050406/marijuana-chemical-fights-hardened-arteries

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids for Treating Cardiovascular Disorders: Putting Together a Complex Puzzle.

Image result for j microsc ultrastruct

“Cannabinoids have been increasingly gaining attention for their therapeutic potential in treating various cardiovascular disorders. These disorders include myocardial infarction, hypertension, atherosclerosis, arrhythmias, and metabolic disorders.

The aim of this review is to cover the main actions of cannabinoids on the cardiovascular system by examining the most recent advances in this field and major literature reviews.

It is well recognized that the actions of cannabinoids are mediated by either cannabinoid 1 or cannabinoid 2 receptors (CB2Rs). Endocannabinoids produce a triphasic response on blood pressure, while synthetic cannabinoids show a tissue-specific and species-specific response.

Blocking cannabinoid 1 receptors have been shown to be effective against cardiometabolic disorders, although this should be done peripherally. Blocking CB2Rs may be a useful way to treat atherosclerosis by affecting immune cells. The activation of CB2Rs was reported to be useful in animal studies of myocardial infarction and cardiac arrhythmia.

Although cannabinoids show promising effects in animal models, this does not always translate into human studies, and therefore, extensive clinical studies are needed to truly establish their utility in treating cardiovascular disease.”

https://www.ncbi.nlm.nih.gov/pubmed/30464888

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

New insights on atherosclerosis: A cross-talk between endocannabinoid systems with gut microbiota.

Logo of jctr

“The incidence of atherosclerosis is increasing rapidly all over the world. Inflammatory processes have outstanding role in coronary artery disease (CAD) etiology and other atherosclerosis manifestations. Recently attentions have been increased about gut microbiota in many fields of medicine especially in inflammatory diseases like atherosclerosis. Ineffectiveness in gut barrier functions and subsequent metabolic endotoxemia (caused by rise in plasma lipopolysaccharide levels) is associated with low-grade chronic inflammation i.e. a recognized feature of atherosclerosis. Furthermore, the role of trimethylamine-N-oxide (TMAO), a gut bacterial metabolite has been suggested in atherosclerosis development. On the other hand, the effectiveness of gut microbiota modulation that results in TMAO reduction has been investigated. Moreover, considerable evidence supports a role for the endocannabinoid system (ECS) in atherosclerosis pathology which affects gut microbiota, but their effects on atherosclerosis are controversial. Therefore, we presented some evidence about the relationship between gut microbiota and ECS in atherosclerosis. We also presented evidences that gut microbiota modulation by pre/probiotics can have significant influence on the ECS.

Even though there are many questions which have been unanswered, studies demonstrated that mucosal barrier function disruption and subsequent gut microbiota-derived endotoxemia could contribute to cardiometabolic diseases pathogenesis. As well, number of studies revealed that TMAO in systemic circulation can activate macrophages which lead to cholesterol accumulation and subsequent foam cells formation in atherosclerotic lesions. On the other hand, accumulating evidence proposes that ECS involved in many physiological processes that are related to maintenance of gut-barrier function and inflammation regulation. Hence, although present literature review provides beneficial evidence in support of crosstalk between ECS and gut microbiota, additional studies are needed to clarify whether gut microbiota modulation can alter ECS tone and inflammation levels or not.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203867/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Acute administration of beta-caryophyllene prevents endocannabinoid system activation during transient common carotid artery occlusion and reperfusion.

Image result for lipids in health and disease

“The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) has been shown to stimulate early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation.

The aim of the present study is to probe the possibility to prevent the molecular changes induced by the BCCAO/R with dietary natural compounds known to possess anti-inflammatory activity, such as the phytocannabinoid beta-caryophyllene (BCP).

CONCLUSIONS:

Collectively, the pre-treatment with BCP, likely acting as agonist for CB2 and PPAR-alpha receptors, modulates in a beneficial way the ECS activation and the lipoperoxidation, taken as indicative of oxidative stress. Furthermore, our results support the evidence that BCP may be used as a dietary supplement to control the physiological response to the hypoperfusion/reperfusion-induced oxidative stress.”

“beta-caryophyllene (BCP), a sesquiterpene found as a common constituent of the essential oils of numerous food plants and primary component in Cannabis sativa L., is a dietary phytocannabinoid acting as selective agonist for CB2 receptor and peroxisome-proliferator activating receptor alpha (PPAR-alpha)”
“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Beta-caryophyllene protects diet-induced dyslipidemia and vascular inflammation in rats: Involvement of CB2 and PPAR-γ receptors.

Chemico-Biological Interactions

“Beta-caryophyllene (BCP) is a phytocannabinoid possessing selective agonistic activity to cannabinoid type-2 receptors (CB2R) and peroxisome proliferator-activated receptors-α (PPAR-α). However, few studies reported the contribution of PPAR-γ receptors in BCP effects.

The aim of this study was to investigate the BCP effects on diet-induced dyslipidemia and vascular inflammation as well as the involvement of CB2R and PPAR-γ receptors.

BCP treatment was superior to pioglitazone in anti-inflammatory and anti-atherosclerotic measures. BCP may represent a more potent alternate to pioglitazone avoiding its side effects in the treatment of insulin resistance and vascular inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/30343038

https://www.sciencedirect.com/science/article/pii/S0009279718309347?via%3Dihub

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous