Marijuana Use by Adolescents and Young Adults with Inflammatory Bowel Disease.

Journal of Pediatrics Home

“Marijuana use by adolescents and young adults with IBD is common and perceived as beneficial.”

https://www.ncbi.nlm.nih.gov/pubmed/29673723

http://www.jpeds.com/article/S0022-3476(18)30388-3/fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Ajulemic acid: potential treatment for chronic inflammation.

Pharmacology Research & Perspectives banner

“Ajulemic acid (AJA, CT-3, IP-751, JBT-101, anabasum) is a first-in-class, synthetic, orally active, cannabinoid-derived drug that preferentially binds to the CB2 receptor and is nonpsychoactive.

In preclinical studies, and in Phase 1 and 2 clinical trials, AJA showed a favorable safety, tolerability, and pharmacokinetic profile. It also demonstrated significant efficacy in preclinical models of inflammation and fibrosis. It suppresses tissue scarring and stimulates endogenous eicosanoids that resolve chronic inflammation and fibrosis without causing immunosuppression.

AJA is currently being developed for use in 4 separate but related indications including systemic sclerosis (SSc), cystic fibrosis, dermatomyositis (DM), and systemic lupus erythematosus. Phase 2 clinical trials in the first 3 targets demonstrated that it is safe, is a potential treatment for these orphan diseases and appears to be a potent inflammation-resolving drug with a unique mechanism of action, distinct from the nonsteroidal anti-inflammatory drug (NSAID), and will be useful for treating a wide range of chronic inflammatory diseases.

It may be considered to be a disease-modifying drug unlike most NSAIDs that only provide symptomatic relief. AJA is currently being evaluated in 24-month open-label extension studies in SSc and in skin-predominant DM. A Phase 3 multicenter trial to demonstrate safety and efficacy in SSc has recently been initiated.”

“Ajulemic acid, a synthetic cannabinoid acid, induces an antiinflammatory profile of eicosanoids in human synovial cells.”  http://www.ncbi.nlm.nih.gov/pubmed/18840450

“Ajulemic acid (CT3): a potent analog of the acid metabolites of THC.”  https://www.ncbi.nlm.nih.gov/pubmed/10903396

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis and joints: scientific evidence for the alleviation of osteoarthritis pain by cannabinoids.

 

Related image

“Cannabis has been used for millennia to treat a multitude of medical conditions including chronic pain.

Osteoarthritis (OA) pain is one of the most common types of pain and patients often turn to medical cannabis to manage their symptoms.

While the majority of these reports are anecdotal, there is a growing body of scientific evidence which supports the analgesic potential of cannabinoids to treat OA pain.

OA pain manifests as a combination of inflammatory, nociceptive, and neuropathic pain, each requiring modality-specific analgesics. The body’s innate endocannabinoid system (ECS) has been shown to ameliorate all of these pain subtypes.

This review summarizes the components of the ECS and details the latest research pertaining to plant-based and man-made cannabinoids for the treatment of OA pain. Recent pre-clinical evidence supporting a role for the ECS to control OA pain is described as well as current clinical evidence of the efficacy of cannabinoids for treating OA pain in mixed patient populations.

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anti-inflammatory properties of cannabidiol, a non-psychotropic cannabinoid, in experimental allergic contact dermatitis.

Journal of Pharmacology and Experimental Therapeutics

“Phytocannabinoids modulate inflammatory responses by regulating the production of cytokines in several experimental models of inflammation.

Cannabinoid type-2 (CB2) receptor activation was shown to reduce the production of the monocyte chemotactic protein-2 (MCP-2) chemokine in polyinosinic-polycytidylic acid [poly-(I:C)]-stimulated human keratinocyte (HaCaT) cells, an in vitro model of allergic contact dermatitis (ACD).

We investigated if non-psychotropic cannabinoids like cannabidiol (CBD) produced similar effects in this experimental model of ACD.

This is the first demonstration of the anti-inflammatory properties of CBD in an experimental model of ACD.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol to Improve Mobility in People with Multiple Sclerosis

Image result for frontiers in neurology

“Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) that affects an estimated 2.3 million people worldwide. The symptoms of MS are highly varied but frequently include pain, muscle spasticity, fatigue, inflammation, and depression. These symptoms often lead to reduced physical activity, negatively impact functional mobility, and have a detrimental impact on patients’ quality of life.

Although recent years have seen significant advances in disease modifying therapy, none of the current treatments halts or cures MS related symptoms. As a consequence, many people with MS (PwMS) look for alternative and complementary therapies such as cannabis.

The cannabis plant contains many biologically active chemicals, including ~60 cannabinoids. Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) are typically the most concentrated chemical components of cannabis and believed to primarily drive therapeutic benefit.

There is evidence that CBD has a number of beneficial pharmacological effects. It is anti-inflammatory, antioxidative, antiemetic, antipsychotic, and neuroprotective. The review of 132 original studies by Bergamaschi et al. describes the safety profile of CBD by highlighting that catalepsy is not induced and physiological parameters (heart rate, blood pressure, and body temperature) are not altered. Moreover, psychomotor and psychological functions are not negatively affected. High doses of up to 1,500 mg per day and chronic use have been repeatedly shown to be well tolerated by humans.

Additionally, there is also evidence that CBD may reduce the negative psychotropic effects, memory impairment, and appetite stimulation, anxiety and psychotic-like states of THC while enhancing its positive therapeutic actions.

 Anecdotal reports indicate that an increasing number of PwMS use cannabis (medical marijuana) as a supplement to improve their mobility.

Based on the following considerations, it is our opinion that CBD supplementation maybe advisable for PwMS to reduce fatigue, pain, spasticity, and ultimately improve mobility. “

https://www.frontiersin.org/articles/10.3389/fneur.2018.00183/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Endocannabinoid System and Migraine Pain: An Update.

 Image result for frontiers in neuroscience

“The trigeminovascular system (TS) activation and the vasoactive release from trigeminal endings, in proximity of the meningeal vessels, are considered two of the main effector mechanisms of migraine attacks. Several other structures and mediators are involved, however, both upstream and alongside the TS.

Among these, the endocannabinoid system (ES) has recently attracted considerable attention. Experimental and clinical data suggest indeed a link between dysregulation of this signaling complex and migraine headache.

Clinical observations, in particular, show that the levels of anandamide (AEA)-one of the two primary endocannabinoid lipids-are reduced in cerebrospinal fluid and plasma of patients with chronic migraine (CM), and that this reduction is associated with pain facilitation in the spinal cord.

AEA is produced on demand during inflammatory conditions and exerts most of its effects by acting on cannabinoid (CB) receptors. AEA is rapidly degraded by fatty acid amide hydrolase (FAAH) enzyme and its levels can be modulated in the peripheral and central nervous system (CNS) by FAAH inhibitors.

Inhibition of AEA degradation via FAAH is a promising therapeutic target for migraine pain, since it is presumably associated to an increased availability of the endocannabinoid, specifically at the site where its formation is stimulated (e.g., trigeminal ganglion and/or meninges), thus prolonging its action.”

https://www.ncbi.nlm.nih.gov/pubmed/29615860

https://www.frontiersin.org/articles/10.3389/fnins.2018.00172/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids in health and disease: pharmacological potential in metabolic syndrome and neuroinflammation.

 

Image result for Horm Mol Biol Clin Investig

“The use of different natural and/or synthetic preparations of Cannabis sativa is associated with therapeutic strategies for many diseases. Indeed, thanks to the widespread diffusion of the cannabinoidergic system in the brain and in the peripheral districts, its stimulation, or inhibition, regulates many pathophysiological phenomena.

In particular, central activation of the cannabinoidergic system modulates the limbic and mesolimbic response which leads to food craving.

Moreover, cannabinoid agonists are able to reduce inflammatory response.

In this review a brief history of cannabinoids and the protagonists of the endocannabinoidergic system, i.e. synthesis and degradation enzymes and main receptors, will be described. Furthermore, the pharmacological effects of cannabinoids will be outlined. An overview of the involvement of the endocannabinoidergic system in neuroinflammatory and metabolic pathologies will be made.

Finally, particular attention will also be given to the new pharmacological entities acting on the two main receptors, cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), with particular focus on the neuroinflammatory and metabolic mechanisms involved.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Antiepileptogenic Effect of Subchronic Palmitoylethanolamide Treatment in a Mouse Model of Acute Epilepsy.

 Image result for frontiers in molecular neuroscience

“Research on the antiepileptic effects of (endo-)cannabinoids has remarkably progressed in the years following the discovery of fundamental role of the endocannabinoid (eCB) system in controlling neural excitability. Moreover, an increasing number of well-documented cases of epilepsy patients exhibiting multi-drug resistance report beneficial effects of cannabis use.

Pre-clinical and clinical research has increasingly focused on the antiepileptic effectiveness of exogenous administration of cannabinoids and/or pharmacologically induced increase of eCBs such as anandamide (also known as arachidonoylethanolamide [AEA]). Concomitant research has uncovered the contribution of neuroinflammatory processes and peripheral immunity to the onset and progression of epilepsy.

Accordingly, modulation of inflammatory pathways such as cyclooxygenase-2 (COX-2) was pursued as alternative therapeutic strategy for epilepsy. Palmitoylethanolamide (PEA) is an endogenous fatty acid amide related to the centrally and peripherally present eCB AEA, and is a naturally occurring nutrient that has long been recognized for its analgesic and anti-inflammatory properties.

Neuroprotective and anti-hyperalgesic properties of PEA were evidenced in neurodegenerative diseases, and antiepileptic effects in pentylenetetrazol (PTZ), maximal electroshock (MES) and amygdaloid kindling models of epileptic seizures. Moreover, numerous clinical trials in chronic pain revealed that PEA treatment is devoid of addiction potential, dose limiting side effects and psychoactive effects, rendering PEA an appealing candidate as antiepileptic compound or adjuvant.

In the present study, we aimed at assessing antiepileptic properties of PEA in a mouse model of acute epileptic seizures induced by systemic administration of kainic acid (KA).

Here, we demonstrate that subchronic administration of PEA significantly alleviates seizure intensity, promotes neuroprotection and induces modulation of the plasma and hippocampal eCB and eiC levels in systemic KA-injected mice.”

https://www.ncbi.nlm.nih.gov/pubmed/29593494

https://www.frontiersin.org/articles/10.3389/fnmol.2018.00067/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Chronic Pain Treatment With Cannabidiol in Kidney Transplant Patients in Uruguay.

Transplantation Proceedings Home

“Chronic pain is a major therapeutic problem in kidney transplant patients owing to nephrotoxicity associated with nonsteroidal antiiflammatory drugs.

Benefits in chronic pain treatment with cannabidiol (CBD) have been reported.

This study assesses the effect, safety, and possible drug interactions in kidney transplant patients treated with CBD for chronic pain.

RESULTS:

We assessed 7 patients with a mean age of 64.5 years (range, 58-75 years). CBD initial dose was 100 mg/d, CBD dose reduction to 50 mg/d has been done on day 4 to patient 1 for persistent nausea. Tacrolimus dose reduction in patient 3 was undertaken on days 4, 7, and 21 owing to persisting elevated levels (even before CBD) and itching, and on day 21 in patient 5. Tacrolimus levels decreased in patient 2 but were normal in the control 1 week later. Patients on cyclosporine were stable. Adverse effects were nausea, dry mouth, dizziness, drowsiness, and intermittent episodes of heat. CBD dose decrease was required in 2 patients. Two patients had total pain improvement, 4 had a partial response in the first 15 days, and in 1 there was no change.

CONCLUSIONS:

During this follow-up, CBD was well-tolerated, and there were no severe adverse effects. Plasma levels of tacrolimus were variable. Therefore, longer follow-up is required.”

https://www.ncbi.nlm.nih.gov/pubmed/29579828

http://www.transplantation-proceedings.org/article/S0041-1345(17)30962-4/fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Modulation of central endocannabinoid system results in gastric mucosal protection in the rat.

Brain Research Bulletin

“Previous findings showed that inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), degrading enzymes of anandamide (2-AEA) and 2-arachidonoylglycerol (2-AG), reduced the nonsteroidal anti-inflammatory drug-induced gastric lesions.

The present study aimed to investigate: i./whether central or peripheral mechanism play a major role in the gastroprotective effect of inhibitors of FAAH, MAGL and AEA uptake, ii./which peripheral mechanism(s) may play a role in mucosal protective effect of FAAH, MAGL and uptake inhibitors.

Gastric mucosal damage was induced by acidified ethanol.

 

CONCLUSION:

Elevation of central endocannabinoid levels by blocking their degradation or uptake via stimulation of mucosal defensive mechanisms resulted in gastroprotective action against ethanol-induced mucosal injury. These findings might suggest that central endocannabinoid system may play a role in gastric mucosal defense and maintenance of mucosal integrity.”

https://www.ncbi.nlm.nih.gov/pubmed/29438780

https://www.sciencedirect.com/science/article/abs/pii/S0361923017306044

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous