Δ9-tetrahydrocannabinol attenuates oxycodone self-administration under extended access conditions.

Neuropharmacology

“Growing nonmedical use of prescription opioids is a global problem, motivating research on ways to reduce use and combat addiction.

Medical cannabis (“medical marijuana”) legalization has been associated epidemiologically with reduced opioid harms and cannabinoids have been shown to modulate effects of opioids in animal models.

This study was conducted to determine if Δ9-tetrahydrocannabinol (THC) enhances the behavioral effects of oxycodone.

Together these data demonstrate additive effects of THC and oxycodone and suggest the potential use of THC to enhance therapeutic efficacy, and to reduce the abuse, of opioids.”

https://www.ncbi.nlm.nih.gov/pubmed/30980837

“Δ9-tetrahydrocannabinol (THC) enhances the antinociceptive effects of oxycodone. Vaporized and injected THC reduces oxycodone self-administration. Cannabinoids may reduce opioid use for analgesia. Cannabinoids may reduce nonmedical opioid use.”  

https://www.sciencedirect.com/science/article/pii/S0028390819301212?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol attenuates mechanical allodynia in streptozotocin-induced diabetic rats via serotonergic system activation through 5-HT1A receptors.

Brain Research

“Most diabetic patients describe moderate to severe pain symptoms whose pharmacological treatment is palliative and poorly effective. Cannabidiol (CBD) has shown promising results in painful conditions. Then, we aimed to investigate the potential antinociceptive effect of CBD over the mechanical allodynia in streptozotocin-induced diabetic (DBT) rats, as well as its involved mechanisms. Wistar adult male diabetic rats were treated acutely or sub-chronically (for 14 days) with CBD (0.1, 0.3 or 3 mg/Kg, intraperitoneal; i.p.) and had their mechanical threshold assessed using the electronic Von Frey. Acute treatment with CBD (at doses of 0.3 and 3 mg/Kg) exerted a significant anti-allodynic effect, which is not associated with locomotor impairment. The antinociceptive effect of CBD (3 mg/Kg) was not altered by the pre-treatment with CB1 or CB2 receptor antagonists (AM251 and AM630; respectively; both at a dose of 1 mg/kg, i.p.) nor by glycine receptor antagonist (strychnine hydrochloride, 10 μg/rat, intrathecal, i.t.). However, this effect was completely prevented by the pre-treatment with the selective 5-HT1A receptor antagonist WAY 100135 (3 μg/rat, i.t.). Sub-chronic treatment with CBD (0.3 or 3 mg/Kg) induced a sustained attenuation of the mechanical allodynia in DBT rats. DBT rats presented significantly lower spinal cord levels of serotonin, which was prevented by the daily treatment with CBD (0.3 mg/Kg). Taken together, our data suggest that CBD may be effective in the treatment of painful diabetic neuropathy and this effect seems to be potentially mediated by the serotonergic system activation through 5-HT1A receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/30898678

https://www.sciencedirect.com/science/article/pii/S0006899319301532?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Characterization of Cancer-Induced Nociception in a Murine Model of Breast Carcinoma.

“Severe and poorly treated pain often accompanies breast cancer. Thus, novel mechanisms involved in breast cancer-induced pain should be investigated. Then, it is necessary to characterize animal models that are reliable with the symptoms and progression of the disease as observed in humans. Explaining cancer-induced nociception in a murine model of breast carcinoma was the aim of this study. 4T1 (104) lineage cells were inoculated in the right fourth mammary fat pad of female BALB/c mice; after this, mechanical and cold allodynia, or mouse grimace scale (MGS) were observed for 30 days. To determine the presence of bone metastasis, we performed the metastatic clonogenic test and measure calcium serum levels. At 20 days after tumor induction, the antinociceptive effect of analgesics used to relieve pain in cancer patients (acetaminophen, naproxen, codeine or morphine) or a cannabinoid agonist (WIN 55,212-2) was tested. Mice inoculated with 4T1 cells developed mechanical and cold allodynia and increased MGS. Bone metastasis was confirmed using the clonogenic assay, and hypercalcemia was observed 20 days after cells inoculation. All analgesic drugs reduced the mechanical and cold allodynia, while the MGS was decreased only by the administration of naproxen, codeine, or morphine. Also, WIN 55,212-2 improved all nociceptive measures. This pain model could be a reliable form to observe the mechanisms of breast cancer-induced pain or to observe the efficacy of novel analgesic compounds.”

https://www.ncbi.nlm.nih.gov/pubmed/30850915

https://link.springer.com/article/10.1007%2Fs10571-019-00666-8

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Perspectives on cannabis as a substitute for opioid analgesics.

 Future Medicine Logo“With the opioid epidemic reaching new heights in the USA, it has become critical to find suitable alternatives to opioids.

Cannabis, an antinociceptive, is a strong contender to help patients reduce their opioid usage.

A growing literature has been examining the complex effects cannabis has on pain relief and on opioid usage; whether it is a substitute for opioids or increases their use. This review explores the studies that compare cannabis-opioid interactions and presents some challenges of cannabis research and usage.

The practical clinical pharmacology of cannabis as an analgesic, including the route of administration, safety and pharmacokinetics, are discussed to address the concerns, as well as possible solutions, of cannabis as a pain reliever.”

https://www.ncbi.nlm.nih.gov/pubmed/30681029

https://www.futuremedicine.com/doi/10.2217/pmt-2018-0051

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Some Prospective Alternatives for Treating Pain: The Endocannabinoid System and Its Putative Receptors GPR18 and GPR55.

Image result for frontiers in pharmacology“Marijuana extracts (cannabinoids) have been used for several millennia for pain treatment.

Regarding the site of action, cannabinoids are highly promiscuous molecules, but only two cannabinoid receptors (CB1 and CB2) have been deeply studied and classified.

Thus, therapeutic actions, side effects and pharmacological targets for cannabinoids have been explained based on the pharmacology of cannabinoid CB1/CB2 receptors. However, the accumulation of confusing and sometimes contradictory results suggests the existence of other cannabinoid receptors.

Different orphan proteins (e.g., GPR18, GPR55, GPR119, etc.) have been proposed as putative cannabinoid receptors.

According to their expression, GPR18 and GPR55 could be involved in sensory transmission and pain integration.

This work summarized novel data supporting that, besides cannabinoid CB1 and CB2receptors, GPR18 and GPR55 may be useful for pain treatment.

Conclusion: There is evidence to support an antinociceptive role for GPR18 and GPR55.”

https://www.ncbi.nlm.nih.gov/pubmed/30670965

https://www.frontiersin.org/articles/10.3389/fphar.2018.01496/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Discovering the pharmacodynamics of conolidine and cannabidiol using a cultured neuronal network based workflow.

Scientific Reports“Determining the mechanism of action (MOA) of novel or naturally occurring compounds mostly relies on assays tailored for individual target proteins.

Conolidine and cannabidiol are plant-derivatives with known antinociceptive activity but unknown MOA.

We used principal component analysis (PCA) and multi-dimensional scaling (MDS) to compare network activity profiles of conolidine/cannabidiol to a series of well-studied compounds with known MOA.

Network activity profiles evoked by conolidine and cannabidiol closely matched that of ω-conotoxin CVIE, a potent and selective Cav2.2 calcium channel blocker with proposed antinociceptive action suggesting that they too would block this channel. To verify this, Cav2.2 channels were heterologously expressed, recorded with whole-cell patch clamp and conolidine/cannabidiol was applied.

Remarkably, conolidine and cannabidiol both inhibited Cav2.2, providing a glimpse into the MOA that could underlie their antinociceptive action.”

https://www.ncbi.nlm.nih.gov/pubmed/30644434

https://www.nature.com/articles/s41598-018-37138-w

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Anti-Inflammatory Properties of Terpenoids from Cannabis.

View details for Cannabis and Cannabinoid Research cover image

“Cannabinoids are well known to have anti-inflammatory effects in mammalians; however, the Cannabis plant also contains other compounds such as terpenoids, whose biological effects have not yet been characterized. The aim of this study was to compare the anti-inflammatory properties of terpenoids with those of cannabidiol (CBD).

Materials and Methods: Essential oils prepared from three monoecious nonpsychoactive chemotypes of Cannabis were analyzed for their terpenoid content and subsequently studied pharmacologically for their anti-inflammatory properties in vitro and in vivo.

Results: In vitro, the three essential oils rich in terpenoids partly inhibited reactive oxygen intermediate and nitric oxide radical (NO) production in RAW 264.7 stimulated macrophages. The three terpenoid-rich oils exerted moderate anti-inflammatory activities in an in vivo anti-inflammatory model without affecting tumor necrosis factor alpha (TNFα) serum levels.

Conclusions: The different Cannabis chemotypes showed distinct compositions of terpenoids. The terpenoid-rich essential oils exert anti-inflammatory and antinociceptive activities in vitro and in vivo, which vary according to their composition. Their effects seem to act independent of TNFα. None of the essential oils was as effective as purified CBD. In contrast to CBD that exerts prolonged immunosuppression and might be used in chronic inflammation, the terpenoids showed only a transient immunosuppression and might thus be used to relieve acute inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/30596146

https://www.liebertpub.com/doi/10.1089/can.2018.0014

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Restored Self: A Phenomenological Study of Pain Relief by Cannabis.

Pain Medicine

“OBJECTIVE:

To explore the subjective experience of pain relief by cannabis.

RESULTS:

Three key themes that emerged from the analysis were explored: 1) the Sigh of Relief, describing the corporal sensation of using cannabis, including a sense of relaxation and reduction in pain; 2) the Return to Normality, describing the comprehensive effect of using cannabis, including an increased ability to sleep, focus, and function; and 3) the Side Effects of using cannabis.

CONCLUSIONS:

We propose the term Restored Self to conceptualize the effect of medical cannabis. Restored Self is the experience of regaining one’s sense of self, sense of normality, and sense of control over one’s life.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

ANTINOCICEPTIVE TOLERANCE TO NSAIDS PARTIALLY MEDIATED VIA ENDOCANNABINOIDS IN ANTERIOR CINGULATE CORTEX OF RATS.

Image result for Georgian Med News

“Pain is characterized as a complex experience, dependent not only on the regulation of nociceptive sensory systems but also on the activation of mechanisms that control emotional processes in limbic brain areas.

Non-opioid, non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely used analgesics in the treatment of not-severe pain. We have recently shown that repeated doses result in tolerance to these drugs like opioids.

Here we investigated the central brain mechanisms of non-opioid induced antinociception in the non-acute pain models of rats, such as the ‘formalin test’ and a relation between administration of NSAIDs in the limbic brain area, – the anterior cingulated cortex (ACC), – and the endocannabinoid system.

The present data support the notion that endocannabinoids’ CB1 receptor contributes in part to antinociceptive effects of NSAIDs and probably involved in activation of the descending opioid modulatory system of pain.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Role of Endocannabinoid System in the Peripheral Antinociceptive Action of Aripiprazole.

Image result for ovid journal

“Recently, we demonstrated that the antipsychotic dopaminergic and serotoninergic agonist aripiprazole induced peripheral antinociception. However, the mechanism underlying this effect has not been fully established.

Here, our aim was to identify possible relationships between this action of aripiprazole and the endocannabinoid system.

CONCLUSIONS:

These results provide evidence for the involvement of the endocannabinoid system in peripheral antinociception induced by aripiprazole treatment.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous