Cannabinoids and Opioids in the Treatment of Inflammatory Bowel Diseases.

Image result for clinical and translational gastroenterology“In traditional medicine, Cannabis sativa has been prescribed for a variety of diseases. Today, the plant is largely known for its recreational purpose, but it may find a way back to what it was originally known for: a herbal remedy. Most of the plant’s ingredients, such as Δ-tetrahydrocannabinol, cannabidiol, cannabigerol, and others, have demonstrated beneficial effects in preclinical models of intestinal inflammation. Endogenous cannabinoids (endocannabinoids) have shown a regulatory role in inflammation and mucosal permeability of the gastrointestinal tract where they likely interact with the gut microbiome. Anecdotal reports suggest that in humans, Cannabis exerts antinociceptive, anti-inflammatory, and antidiarrheal properties. Despite these reports, strong evidence on beneficial effects of Cannabis in human gastrointestinal diseases is lacking. Clinical trials with Cannabis in patients suffering from inflammatory bowel disease (IBD) have shown improvement in quality of life but failed to provide evidence for a reduction of inflammation markers. Within the endogenous opioid system, mu opioid receptors may be involved in anti-inflammation of the gut. Opioids are frequently used to treat abdominal pain in IBD; however, heavy opioid use in IBD is associated with opioid dependency and higher mortality. This review highlights latest advances in the potential treatment of IBD using Cannabis/cannabinoids or opioids.”

https://www.ncbi.nlm.nih.gov/pubmed/31899693

https://journals.lww.com/ctg/Abstract/latest/Cannabinoids_and_Opioids_in_the_Treatment_of.99898.aspx

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

(+)-Cannabidiol analogues which bind cannabinoid receptors but exert peripheral activity only.

“We have tested a series of (+)-cannabidiol derivatives… for central and peripheral (intestinal, antiinflammatory and peripheral pain) effects in mice…

We conclude that centrally inactive (+)-cannabidiol analogues should be further developed as antidiarrheal, antiinflammatory and analgesic drugs for gastrointestinal and other peripheral conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/15588739

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Peripheral, but not central effects of cannabidiol derivatives: mediation by CB(1) and unidentified receptors.

“Delta-9 tetrahydrocannabinol (Delta(9)-THC) and (-)-cannabidiol ((-)-CBD) are major constituents of the Cannabis sativa plant with different pharmacological profiles…

We tested a series of (+)- and (-)-CBD derivatives for central and peripheral effects in mice…

We suggest that (+)-CBD analogues have mixed agonist/antagonist activity in the brain.

Second, (-)-CBD analogues which are devoid of cannabinoid receptor affinity but which inhibit intestinal motility, suggest the existence of a non-CB(1), non-CB(2) receptor.

Therefore, such analogues should be further developed as antidiarrheal and/or antiinflammatory drugs.

We propose to study the therapeutic potential of (-)- and (+)-CBD derivatives for complex conditions such as inflammatory bowel disease and cystic fibrosis.”

http://www.ncbi.nlm.nih.gov/pubmed/15910887

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Potential therapeutic agents derived from the cannabinoid nucleus.

Abstract

“Drugs derived from Cannabis sativa (Cannabinceae) were used until the 1940’s for their stimulant and depressant effects for treating somatic and psychiatric illnesses. Renewed interest in marihuana research began in the 1970’s and again pointed to the therapeutic potential of cannabinoids. Safer and more useful therapeutic agents may be generated from cannabinoids similarly to morphine, lysergic acid diethylamide, and cocaine which have structurally related analgesics, oxytoxics, and local anesthetics respectively. It has been shown that the C-ring in cannabinoids can be substituted with a variety of nitrogen and sulfur-containing rings without loss of CNS (central nervous system) activity. Cannabinoids have been shown to inhibit prostaglandin synthesis, intensify pressor effects of endogenous amines like norepinephrine, and enhance the stimulant effects of amphetamine. Cannabinoids’ therapeutic potential lies in the areas of analgesics and anticonvulsants, and for use as a sedative-hypnotic, an antiglaucoma agent, an antiasthmatic agent, an antidiarrheal agent, and possibly as an anticancer and immunosuppressant agent.”

http://www.ncbi.nlm.nih.gov/pubmed/24325

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous