Rimonabant Kills Colon Cancer Stem Cells without Inducing Toxicity in Normal Colon Organoids

Image result for frontiers in pharmacology

“Colorectal cancer (CRC), like other tumor types, is a highly heterogeneous disease. Within the tumor bulk, intra-tumoral heterogeneity is also ascribable to Cancer Stem Cells (CSCs) subpopulation, characterized by high chemoresistance and the unique ability to retain tumorigenic potential, thus associated to tumor recurrence. High dynamic plasticity of CSCs, makes the development of winning therapeutic strategies even more complex to completely eradicate tumor fuel.

Rimonabant, originally synthesized as antagonist/inverse agonist of Cannabinoid Receptor 1, is able to inactivate Wnt signaling, both in vitro and in vivo, in CRC models, through inhibition of p300-histone acetyltransferase activity. Since Wnt/β-Catenin pathway is the main player underlying CSCs dynamic, this finding candidates Rimonabant as potential modulator of cancer stemness, in CRC.

Overall, results from this work provided new insights on anti-tumor efficacy of Rimonabant, strongly suggesting that it could be a novel lead compound for CRC treatment.

 Anti-tumor action of cannabinoids in CRC was strongly supported by several authors.
The Endocannabinoid (EC) system role in the progression of CRC has been analyzed in vivo in the mouse model of azoxymethane-induced colon carcinogenesis, where cannabinoids-mediated reduction of precancerous lesions in the mouse colon was found.
In CRC cells, agonists and antagonists of both cannabinoid receptors, CB1 and CB2, showed anti-tumor action through induction of cell death with different mechanisms ranging from apoptosis to mitotic catastrophe”

Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis

“Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment.

Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects.

Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases.

Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group.

Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis.

Regarding the pharmacodynamics of the hybrid CB1R/iNOS inhibitor, two important principles have emerged from efforts to develop effective antifibrotic therapies. First, antifibrotic treatment strategies could aim to control the primary disease, to inhibit fibrogenic gene expression and signaling, to promote molecular mechanisms involved in fibrosis regression, or a combination of these. Second, with multiple molecular mechanisms and signaling pathways involved in fibrosis, targeting more than one could increase antifibrotic efficacy, and the hybrid CB1R/iNOS inhibitor embodies optimal characteristics on both accounts.

As to the first principle, both the endocannabinoid/CB1R system and iNOS are ideal targets, as they are known to be involved directly in the fibrotic process and also in the conditions predisposing to liver fibrosis, as detailed in the Introduction. An emerging major predisposing factor to liver fibrosis is nonalcoholic fatty liver disease, and CB1R blockade has proven effective in mitigating obesity-related hepatic steatosis in both rodent models and humans. The other two major predisposing factors, alcoholic fatty liver disease and viral hepatitis, also involve increased CB1R activity. Hepatic CB1R expression is induced either by chronic ethanol intake or the hepatitis C virus, and CB1R blockade mitigates alcohol-induced steatosis and inhibits hepatitis C virus production.

The dual targeting of peripheral CB1R and iNOS demonstrated here exemplifies the therapeutic gain obtained by simultaneously hitting more than one molecule, which could then engage distinct as well as convergent cellular pathways. The advantage of such an approach is highlighted by emerging experience with recently developed antifibrotic medications, which indicates that targeting a single pathway has limited effect on fibrotic diseases.

Thus, the approach illustrated by the present study has promise as an effective antifibrotic strategy.”


Phytocannabinoids and cannabimimetic drugs: recent patents in central nervous system disorders.

“Starting from the chemical structure of phytocannabinoids, isolated from Cannabis sativa plant, research groups designed numerous cannabimimetic drugs.

These compounds according to their activities can be partial, full agonists and antagonists of cannabinoid receptors.

Anecdotal reports and scientific studies described beneficial properties of cannabinoids and their derivatives in several pathological conditions like neurological and neuropsychiatric disorders, and in many other diseases ranging from cancer, atherosclerosis, stroke, hypertension, inflammatory related disorders, and autoimmune diseases.

The cannabinoid CB1 receptor was considered particularly interesting for therapeutic approaches in neurological diseases, because primarily expressed by neurons of the central nervous system. In many experimental models, these drugs act via this receptor, however, CB1 receptor independent mechanisms have been also described. Furthermore, endogenous ligands of cannabinoid receptors, the endocannabinoids, are potent modulators of the synaptic function in the brain. In neurological diseases, numerous studies reported modulation of the levels of endocannabinoids according to the phase of the disease and its progression.


Finally, although the study of the mechanisms of action of these compounds is still unsolved, many reports and patents strongly suggest therapeutic potential of these compounds in neurological diseases.”


Peripheral, but not central effects of cannabidiol derivatives: mediation by CB(1) and unidentified receptors.

“Delta-9 tetrahydrocannabinol (Delta(9)-THC) and (-)-cannabidiol ((-)-CBD) are major constituents of the Cannabis sativa plant with different pharmacological profiles…

We tested a series of (+)- and (-)-CBD derivatives for central and peripheral effects in mice…

We suggest that (+)-CBD analogues have mixed agonist/antagonist activity in the brain.

Second, (-)-CBD analogues which are devoid of cannabinoid receptor affinity but which inhibit intestinal motility, suggest the existence of a non-CB(1), non-CB(2) receptor.

Therefore, such analogues should be further developed as antidiarrheal and/or antiinflammatory drugs.

We propose to study the therapeutic potential of (-)- and (+)-CBD derivatives for complex conditions such as inflammatory bowel disease and cystic fibrosis.”


Cannabinoid System of the Lateral Septum in the Modulation of Anxiety-like Behaviors in Rats.

“A large body of evidence suggests that the cannabinoid CB1 receptor plays a key role in the regulation of emotional behaviors. The present study was designed to evaluate the effects of CB1 agonist and antagonist on anxiety-like behaviors in the lateral septum (LS) region of the rat brain using elevated plus maze test…

The results suggest that the cannabinoid system of the lateral septum modulates anxiety-like behavior through CB1 receptor.”


Effects of cannabinoids on the anxiety-like response in mice.

“Several pieces of anatomical, biochemical and pharmacological evidence indicate that the endocannabinoid system via CB1 receptors is implicated in the control of emotional behavior. However, previous studies have reported unclear and contradictory results concerning the role of cannabinoids in anxiety. The aim of the present study was to examine the influence of the cannabinoid agonist WIN 55,212-2, the CB1 antagonist AM 281, the inhibitor of anandamide hydrolysis AACOCF3  and the inhibitor of anandamide transporter AM404 on the anxiety-like response in mice in the light/dark box test…

  These results support the hypothesis that the endocannabinoid system is involved in the regulation of anxiety-like behavior, and also suggest that the inhibitors of anandamide hydrolysis might be potential anxiolytic drugs.”


The cannabinoid CB1 receptor is involved in the anxiolytic, sedative and amnesic actions of benzodiazepines.

“Previous studies in our laboratory showed that cannabinoid CB1 receptor knockout mice (CB1-/-) presented increased anxiety-like behaviours that did not respond to the anxiolytic actions of benzodiazepines. These results suggest that the pharmacological effects of benzodiazepines may involve the participation of cannabinoid CB1 receptors. Therefore, the purpose of this study was to examine the effects of alprazolam and the cannabinoid CB1 receptor antagonist…

Taken together, these findings revealed that cannabinoid CB1 receptor plays a pivotal role in the pharmacological actions of benzodiazepines. Furthermore, these results suggest that blockade of cannabinoid CB1 receptors may be useful in the treatment of patients with problems related to the consumption of benzodiazepines. Further clinical trials are needed to test this hypothesis.”


Antagonism of cannabinoid 1 receptors reverses the anxiety-like behavior induced by central injections of corticotropin-releasing factor and cocaine withdrawal.

“The endocannabinoid (eCB) system is an important regulator of the stress response and mediates several stress-related behaviors, including anxiety. Despite anatomical evidence that eCBs interact with the principle stress peptide, corticotropin-releasing factor (CRF), few data exist that address functional interactions between these systems. Accordingly, we examined the effects of the CB1 receptor antagonist, AM251, on behavioral anxiety induced by (1) exogenous CRF, and (2) withdrawal from chronic cocaine exposure (mediated by CRF)… Our findings suggest that the anxiogenic effects of CRF and cocaine withdrawal are mediated, at least in part, by CB1 receptor transmission, and provide evidence in support of eCB-CRF interactions that are independent of the hypothalamic-pituitary-adrenal axis.”


The activation of cannabinoid CB2 receptors stimulates in situ and in vitro beta-amyloid removal by human macrophages.

“The endocannabinoid system is a promising therapeutic target in a wide variety of diseases. However, the non-desirable psychotropic effects of natural and synthetic cannabinoids have largely counteracted their clinical usefulness. These effects are mostly mediated by cannabinoid receptors of the CB(1) type, that exhibit a wide distribution in neuronal elements of the CNS. Thus, the presence of other elements of this system in the CNS, such as CB(2) receptors, may open new possibilities for the development of cannabinoid-based therapies. These receptors are almost absent from the CNS in normal conditions but are up-regulated in glial cells under chronic neuroinflammatory stimuli, as has been described in Alzheimer’s disease. To understand the functional role of these receptors, we tested their role in the process of beta-amyloid removal, that is currently considered as one of the most promising experimental approaches for the treatment of this disease.

Our results show that a CB(2) agonist (JWH-015) is capable of inducing the removal of native beta-amyloid removal from human frozen tissue sections as well as of synthetic pathogenic peptide by a human macrophage cell line (THP-1). Remarkably, this effect was achieved at low doses and was specific for this type of cells, as U373MG astrocytoma cells did not respond to the treatment. The effect was CB(2)-mediated, at least partially, as the selective CB(2) antagonist SR144528 prevented the JWH-015-induced plaque removal in situ.

 These data corroborate the possible therapeutic interest of CB(2) cannabinoid specific chemicals in the treatment of Alzheimer’s disease.”


Delta9-tetrahydrocannabinol induces apoptosis in human prostate PC-3 cells via a receptor-independent mechanism.


“The effect of delta9-tetrahydrocannabinol (THC), the major psycho-active component of marijuana, in human prostate cancer cells PC-3 was investigated. THC caused apoptosis in a dose-dependent manner. Morphological and biochemical changes induced by THC in prostate PC-3 cells shared the characteristics of an apoptotic phenomenon. First, loss of plasma membrane asymmetry determined by fluorescent anexin V binding. Second, presence of apoptotic bodies and nuclear fragmentation observed by DNA staining with 4′,6-diamino-2-phenylindole (DAPI). Third, presence of typical ‘ladder-patterned’ DNA fragmentation. Central cannabinoid receptor expression was observed in PC-3 cells by immunofluorescence studies. However, several results indicated that the apoptotic effect was cannabinoid receptor-independent, such as lack of an effect of the potent cannabinoid agonist WIN 55,212-2, inability of cannabinoid antagonist AM 251 to prevent cellular death caused by THC and absence of an effect of pertussis toxin pre-treatment.”