Targeting Peripheral CB1 Receptors Reduces Ethanol Intake via a Gut-Brain Axis.

Cell Metabolism

“Endocannabinoids acting on the cannabinoid-1 receptor (CB1R) or ghrelin acting on its receptor (GHS-R1A) both promote alcohol-seeking behavior, but an interaction between the two signaling systems has not been explored. Here, we report that the peripheral CB1R inverse agonist JD5037 reduces ethanol drinking in wild-type mice but not in mice lacking CB1R, ghrelin peptide or GHS-R1A. JD5037 treatment of alcohol-drinking mice inhibits the formation of biologically active octanoyl-ghrelin without affecting its inactive precursor desacyl-ghrelin. In ghrelin-producing stomach cells, JD5037 reduced the level of the substrate octanoyl-carnitine generated from palmitoyl-carnitine by increasing fatty acid β-oxidation. Blocking gastric vagal afferents abrogated the ability of either CB1R or GHS-R1A blockade to reduce ethanol drinking. We conclude that blocking CB1R in ghrelin-producing cells reduces alcohol drinking by inhibiting the formation of active ghrelin and its signaling via gastric vagal afferents. Thus, peripheral CB1R blockade may have therapeutic potential in the treatment of alcoholism.”

https://www.ncbi.nlm.nih.gov/pubmed/31105045

https://www.sciencedirect.com/science/article/pii/S1550413119301962?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol for the Reduction of Cue-Induced Craving and Anxiety in Drug-Abstinent Individuals With Heroin Use Disorder: A Double-Blind Randomized Placebo-Controlled Trial

Image result for american journal of psychiatry“Despite the staggering consequences of the opioid epidemic, limited nonopioid medication options have been developed to treat this medical and public health crisis.

This study investigated the potential of cannabidiol (CBD), a nonintoxicating phytocannabinoid, to reduce cue-induced craving and anxiety, two critical features of addiction that often contribute to relapse and continued drug use, in drug-abstinent individuals with heroin use disorder.

Acute CBD administration, in contrast to placebo, significantly reduced both craving and anxiety induced by the presentation of salient drug cues compared with neutral cues. CBD also showed significant protracted effects on these measures 7 days after the final short-term (3-day) CBD exposure. In addition, CBD reduced the drug cue–induced physiological measures of heart rate and salivary cortisol levels. There were no significant effects on cognition, and there were no serious adverse effects.

 Conclusions:

CBD’s potential to reduce cue-induced craving and anxiety provides a strong basis for further investigation of this phytocannabinoid as a treatment option for opioid use disorder.”

https://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.2019.18101191

“Study finds CBD effective in treating heroin addiction”  https://www.cnn.com/2019/05/21/health/heroin-opioid-addiction-cbd-study/index.html

“CBD oil may help limit cravings and anxiety in heroin users, study finds”  https://www.nbcnews.com/health/health-news/cbd-oil-may-help-limit-cravings-anxiety-heroin-users-study-n1007856

“Cannabis Compound Eases Anxiety and Cravings of Heroin Addiction”  https://www.scientificamerican.com/article/cannabis-compound-eases-anxiety-and-cravings-of-heroin-addiction/?redirect=1

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis use as a risk factor for causing motor vehicle crashes: a prospective study.

Publication cover image

“We conducted a responsibility analysis to determine whether drivers injured in motor vehicle collisions who test positive for Δ-9-tetrahydrocannabinol (THC) or other drugs are more likely to have contributed to the crash than those who test negative.

There was no increased risk of crash responsibility in drivers with THC<2ng/mL or 2≤THC<5ng/mL.

In this sample of non-fatally injured motor vehicle drivers in British Columbia, Canada, there was no evidence of increased crash risk in drivers with THC<5ng/mL and a statistically non-significant increased risk of crash responsibility (OR=1.74) in drivers with THC≥5ng/mL.”

https://www.ncbi.nlm.nih.gov/pubmed/31106494

https://onlinelibrary.wiley.com/doi/abs/10.1111/add.14663

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Role of the endocannabinoid and endovanilloid systems in an animal model of schizophrenia-related emotional processing/cognitive deficit.

Neuropharmacology

“Studies suggest that the endocannabinoid and endovanilloid systems are implicated in the pathophysiology of schizophrenia.

The Spontaneously Hypertensive Rats (SHR) strain displays impaired contextual fear conditioning (CFC) attenuated by antipsychotic drugs and worsened by pro-psychotic manipulations. Therefore, SHR strain is used to study emotional processing/associative learning impairments associated with schizophrenia and effects of potential antipsychotic drugs.

Here, we evaluated the expression of CB1 and TRPV1 receptors in some brain regions related to the pathophysiology of schizophrenia. We also assessed the effects of drugs that act on the endocannabinoid/endovanilloid systems on the CFC task in SHRs and control animals (Wistar rats – WRs).

These results reinforce the involvement of the endocannabinoid/endovanilloid systems in the SHRs CFC deficit and point to these systems as targets to treat the emotional processing/cognitive symptoms of schizophrenia.”

https://www.ncbi.nlm.nih.gov/pubmed/31103618

https://www.sciencedirect.com/science/article/pii/S0028390819301649?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Efficacy of Cannabinoids in a Pre-Clinical Drug-Screening Platform for Alzheimer’s Disease.

“Finding a therapy for Alzheimer’s disease (AD) is perhaps the greatest challenge for modern medicine. The chemical scaffolds of many drugs in the clinic today are based upon natural products from plants, yet Cannabis has not been extensively examined as a source of potential AD drug candidates.

Here, we determine if a number of non-psychoactive cannabinoids are neuroprotective in a novel pre-clinical AD and neurodegeneration drug-screening platform that is based upon toxicities associated with the aging brain.

This drug discovery paradigm has yielded several compounds in or approaching clinical trials for AD. Eleven cannabinoids were assayed for neuroprotection in assays that recapitulate proteotoxicity, loss of trophic support, oxidative stress, energy loss, and inflammation. These compounds were also assayed for their ability to remove intraneuronal amyloid and subjected to a structure-activity relationship analysis. Pairwise combinations were assayed for their ability to synergize to produce neuroprotective effects that were greater than additive.

Nine of the 11 cannabinoids have the ability to protect cells in four distinct phenotypic neurodegeneration screening assays, including those using neurons that lack CB1 and CB2 receptors. They are able to remove intraneuronal Aβ, reduce oxidative damage, and protect from the loss of energy or trophic support. Structure-activity relationship (SAR) data show that functional antioxidant groups such as aromatic hydroxyls are necessary but not sufficient for neuroprotection. Therefore, there is a need to focus upon CB1 agonists that have these functionalities if neuroprotection is the goal.

Pairwise combinations of THC and CBN lead to a synergistic neuroprotective interaction.

Together, these results significantly extend the published data by showing that non-psychoactive cannabinoids are potential lead drug candidates for AD and other neurodegenerative diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/31104297

https://link.springer.com/article/10.1007%2Fs12035-019-1637-8

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis: From a Plant That Modulates Feeding Behaviors toward Developing Selective Inhibitors of the Peripheral Endocannabinoid System for the Treatment of Obesity and Metabolic Syndrome.

toxins-logo “In this review, we discuss the role of the endocannabinoid (eCB) system in regulating energy and metabolic homeostasis. Endocannabinoids, via activating the cannabinoid type-1 receptor (CB1R), are commonly known as mediators of the thrifty phenotype hypothesis due to their activity in the central nervous system, which in turn regulates food intake and underlies the development of metabolic syndrome. Indeed, these findings led to the clinical testing of globally acting CB1R blockers for obesity and various metabolic complications. However, their therapeutic potential was halted due to centrally mediated adverse effects. Recent observations that highlighted the key role of the peripheral eCB system in metabolic regulation led to the preclinical development of various novel compounds that block CB1R only in peripheral organs with very limited brain penetration and without causing behavioral side effects. These unique molecules, which effectively ameliorate obesity, type II diabetes, fatty liver, insulin resistance, and chronic kidney disease in several animal models, are likely to be further developed in the clinic and may revive the therapeutic potential of blocking CB1R once again.”

https://www.ncbi.nlm.nih.gov/pubmed/31096702

https://www.mdpi.com/2072-6651/11/5/275

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

CB2 receptor deletion on myeloid cells enhanced mechanical allodynia in a mouse model of neuropathic pain.

 Scientific Reports“Neuropathic pain can develop after nerve injury, leading to a chronic condition with spontaneous pain and hyperalgesia.

Pain is typically restricted to the side of the injured nerve, but may occasionally spread to the contralateral side, a condition that is often referred to as mirror-image pain.

Mechanisms leading to mirror-image pain are not completely understood, but cannabinoid CB2 receptors have been implicated.

In this study, we use genetic mouse models to address the question if CB2 receptors on neurons or on microglia/macrophages are involved.

We conclude that CB2 receptors on microglia and macrophages, but not on neurons, modulate neuropathic pain responses.”

https://www.ncbi.nlm.nih.gov/pubmed/31097758

https://www.nature.com/articles/s41598-019-43858-4

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Diverse TRPV1 responses to cannabinoids.

 Publication Cover“Cannabinoid compounds are potential analgesics. Users of medicinal Cannabis report efficacy for pain control, clinical studies show that cannabis can be effective and opioid sparing in chronic pain, and some constituent cannabinoids have been shown to target nociceptive ion channels. Here, we explore and compare a suite of cannabinoids for their impact upon the physiology of TRPV1. The cannabinoids tested evoke differential responses in terms of kinetics of activation and inactivation. Cannabinoid activation of TRPV1 displays significant dependence on internal and external calcium levels. Cannabinoid activation of TRPV1 does not appear to induce the highly permeant, pore-dilated channel state seen with Capsaicin, even at high current amplitudes. Finally, we analyzed cannabinoid responses at nocioceptive channels other than TRPV1 (TRPV2, TRPM8 and TRPA1), and report that cannabinoids differentially activate these channels. On the basis of response activation and kinetics, state-selectivity and receptor selectivity, it may be possible to rationally design approaches to pain using single or multiple cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/31096838

https://www.tandfonline.com/doi/full/10.1080/19336950.2019.1619436

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidivarin completely rescues cognitive deficits and delays neurological and motor defects in male Mecp2 mutant mice.

SAGE Journals“Recent evidence suggests that 2-week treatment with the non-psychotomimetic cannabinoid cannabidivarin (CBDV) could be beneficial towards neurological and social deficits in early symptomatic Mecp2 mutant mice, a model of Rett syndrome (RTT). The aim of this study was to provide further insights into the efficacy of CBDV in Mecp2-null mice using a lifelong treatment schedule to evaluate its effect on recognition memory and neurological defects in both early and advanced stages of the phenotype progression. CBDV rescues recognition memory deficits in Mecp2 mutant mice and delays the appearance of neurological defects. CBDV administration exerts an enduring rescue of memory deficits in Mecp2 mutant mice. CBDV delays neurological defects but this effect is only transient.” https://www.ncbi.nlm.nih.gov/pubmed/31084246

“Chronic treatment with the phytocannabinoid Cannabidivarin (CBDV) rescues behavioural alterations and brain atrophy in a mouse model of Rett syndrome.”  https://www.ncbi.nlm.nih.gov/pubmed/30056123

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Terpenes in Cannabis sativa – From plant genome to humans.

Plant Science“Cannabis sativa (cannabis) produces a resin that is valued for its psychoactive and medicinal properties. Despite being the foundation of a multi-billion dollar global industry, scientific knowledge and research on cannabis is lagging behind compared to other high-value crops. This is largely due to legal restrictions that have prevented many researchers from studying cannabis, its products, and their effects in humans. Cannabis resin contains hundreds of different terpene and cannabinoid metabolites. Our understanding of the genomic and biosynthetic systems of these metabolites in cannabis, and the factors that affect their variability, is rudimentary. As a consequence, there is concern about lack of consistency with regard to the terpene and cannabinoid composition of different cannabis ‘strains’. Likewise, claims of some of the medicinal properties attributed to cannabis metabolites would benefit from thorough scientific validation.”
https://www.ncbi.nlm.nih.gov/pubmed/31084880 

https://www.sciencedirect.com/science/article/pii/S0168945219301190?via%3Dihub

“Medicinal properties of terpenes found in Cannabis sativa”   https://www.ncbi.nlm.nih.gov/pubmed/30096653

“Terpene synthases from Cannabis sativa”   https://www.ncbi.nlm.nih.gov/pubmed/28355238

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous