Cannabis and Mood Disorders.

 “The present review will provide an overview of the neurobiology, epidemiology, clinical impact, and treatment of cannabis use disorder (CUD) in mood disorders.

Patients with mood disorders including major depressive disorder (MDD) and bipolar disorder (BD) have higher rates of cannabis use, and CUD compared to the general population. Reasons for this association are not clear, nor are the putative therapeutic effects of cannabis use, or its components delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), in these illnesses.

Cannabis use may be associated mood disorders, but more research is needed to increase our understanding of the mechanisms for this association, and to develop more effective treatments for this comorbidity.”

https://www.ncbi.nlm.nih.gov/pubmed/30643708

https://link.springer.com/article/10.1007%2Fs40429-018-0214-y

“Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Results of this study show that Delta(9)-THC and other cannabinoids exert antidepressant-like actions, and thus may contribute to the overall mood-elevating properties of cannabis.”   https://www.ncbi.nlm.nih.gov/pubmed/20332000

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

∆9-Tetrahydrocannabinol, a major marijuana component, enhances the anesthetic effect of pentobarbital through the CB1 receptor.

 “∆9 Tetrahydrocannabinol (∆9-THC) and cannabidiol (CBD), major psychoactive constituents of marijuana, induce potentiation of pentobarbital-induced sleep in mice.

We have elucidated the mechanism of enhancement of the anesthetic effect of pentobarbital by cannabinoids.

These results suggest that binding of ∆9-THC to the CB1 receptor is involved in the synergism with pentobarbital, and that potentiating effect of CBD with pentobarbital may differ from that of ∆9-THC. We successfully demonstrated that ∆9-THC enhanced the anesthetic effect of pentobarbital through the CB1 receptor.”

https://www.ncbi.nlm.nih.gov/pubmed/30636988

“The pharmacological results indicate the effect of ∆9-THC co-administered with pentobarbital was a synergistic, but not additive, action in mice. Further evidence suggests the CB1 receptor plays an important role as a trigger in potentiating pentobarbital-induced sleep by ∆9-THC.”

https://link.springer.com/article/10.1007%2Fs11419-018-0457-2

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer.

 Related image“In the last decades, a lot of attention has been paid to the compounds present in medicinal Cannabis sativa L., such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and their effects on inflammation and cancer-related pain.

The National Cancer Institute (NCI) currently recognizes medicinal C. sativa as an effective treatment for providing relief in a number of symptoms associated with cancer, including pain, loss of appetite, nausea and vomiting, and anxiety.

Several studies have described CBD as a multitarget molecule, acting as an adaptogen, and as a modulator, in different ways, depending on the type and location of disequilibrium both in the brain and in the body, mainly interacting with specific receptor proteins CB1 and CB2.

CBD is present in both medicinal and fibre-type C. sativa plants, but, unlike Δ9-THC, it is completely nonpsychoactive. Fibre-type C. sativa (hemp) differs from medicinal C. sativa, since it contains only few levels of Δ9-THC and high levels of CBD and related nonpsychoactive compounds.

In recent years, a number of preclinical researches have been focused on the role of CBD as an anticancer molecule, suggesting CBD (and CBD-like molecules present in the hemp extract) as a possible candidate for future clinical trials.

CBD has been found to possess antioxidant activity in many studies, thus suggesting a possible role in the prevention of both neurodegenerative and cardiovascular diseases. In animal models, CBD has been shown to inhibit the progression of several cancer types. Moreover, it has been found that coadministration of CBD and Δ9-THC, followed by radiation therapy, causes an increase of autophagy and apoptosis in cancer cells. In addition, CBD is able to inhibit cell proliferation and to increase apoptosis in different types of cancer models.

These activities seem to involve also alternative pathways, such as the interactions with TRPV and GRP55 receptor complexes. Moreover, the finding that the acidic precursor of CBD (cannabidiolic acid, CBDA) is able to inhibit the migration of breast cancer cells and to downregulate the proto-oncogene c-fos and the cyclooxygenase-2 (COX-2) highlights the possibility that CBDA might act on a common pathway of inflammation and cancer mechanisms, which might be responsible for its anticancer activity.

In the light of all these findings, in this review we explore the effects and the molecular mechanisms of CBD on inflammation and cancer processes, highlighting also the role of minor cannabinoids and noncannabinoids constituents of Δ9-THC deprived hemp.”

https://www.ncbi.nlm.nih.gov/pubmed/30627539

https://www.hindawi.com/journals/bmri/2018/1691428/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Special Considerations and Assessment in Patients with Multiple Sclerosis.

Physical Medicine and Rehabilitation Clinics of North America

“Multiple sclerosis is a progressive autoimmune neurologic disorder that may affect any region of the central nervous system. Spasticity in patients with multiple sclerosis can be debilitating and detrimental to the function and quality of life of patients. Treatment options include oral medications, chemodenervation, physical therapy, and modalities.

Cannabinoids in the form of a delta-9-tetrahydrocannabinol/cannabidiol oro-mucosal spray has been shown to be effective in addressing spasticity in multiple sclerosis.

Successful treatment of spasticity will be integrated, multimodal, and individualized.”

https://www.ncbi.nlm.nih.gov/pubmed/30626509

https://www.sciencedirect.com/science/article/pii/S1047965118307617?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The effects of cannabinoids on the endocrine system.

“Cannabinoids are the derivatives of the cannabis plant, the most potent bioactive component of which is tetrahydrocannabinol (THC). The most commonly used drugs containing cannabinoids are marijuana, hashish, and hashish oil.

These compounds exert their effects via interaction with the cannabinoid receptors CB1 and CB2. Type 1 receptors (CB1) are localised mostly in the central nervous system and in the adipose tissue and many visceral organs, including most endocrine organs. Type 2 cannabinoid receptors (CB2) are positioned in the peripheral nervous system (peripheral nerve endings) and on the surface of the immune system cells.

Recently, more and more attention has been paid to the role that endogenous ligands play for these receptors, as well as to the role of the receptors themselves. So far, endogenous cannabinoids have been confirmed to participate in the regulation of food intake and energy homeostasis of the body, and have a significant impact on the endocrine system, including the activity of the pituitary gland, adrenal cortex, thyroid gland, pancreas, and gonads.

Interrelations between the endocannabinoid system and the activity of the endocrine system may be a therapeutic target for a number of drugs that have been proved effective in the treatment of infertility, obesity, diabetes, and even prevention of diseases associated with the cardiovascular system.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Blood-brain barrier disturbances in diabetes-associated dementia: Therapeutic potential for cannabinoids.

Pharmacological Research

“Type-2 diabetes (T2D) increases the risk of dementia by ˜5-fold, however the mechanisms by which T2D increases dementia risk remain unclear. Evidence suggests that the heightened inflammation and oxidative stress in T2D may lead to disruption of the blood-brain barrier (BBB), which precedes premature cognitive decline. Studies show that vascular-targeted anti-inflammatory treatments protect the BBB by attenuating neuroinflammation, and in some studies attenuate cognitive decline. Yet, this potential pathway is understudied in T2D-associated cognitive impairment.

In recent years, therapeutic potential of cannabinoids has gained much interest. The two major cannabinoids, cannabidiol and tetrahydrocannabinol, exert anti-inflammatory and vascular protective effects, however few studies report their potential for reversing BBB dysfunction, particularly in T2D. Therefore, in this review, we summarize the current findings on the role of BBB dysfunction in T2D-associated dementia and consider the potential therapeutic use of cannabinoids as a protectant of cerebrovascular BBB protection.”

https://www.ncbi.nlm.nih.gov/pubmed/30616019

https://www.sciencedirect.com/science/article/abs/pii/S1043661818314634?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Successful cannabis derivatives oromucosal spray therapy for a seronegative stiff-person syndrome: a case report.

 

Image result for bmj journals

“Stiff-person syndrome (SPS) is an uncommon and disabling disorder characterised by progressive rigidity and episodic painful spasms involving axial and limb musculature.

The authors report a patient with seronegative SPS successfully treated with THC-CBD oromucosal spray.

In conclusion cannabinoids can be a therapeutic option to treat spasticity associated with neurological diseases such as stiff-person syndrome.

Our patient’s quality of life has improved remarkably although more information is needed about this particular use.”

https://ejhp.bmj.com/content/19/2/219.2?fbclid=IwAR0PVg0GRQDmu_tXu_vYJmmKHo2MGnJ_EsnkdsR4HE7deFVUtqhAxziHQBc

http://dx.doi.org/10.1136/ejhpharm-2012-000074.352

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Hippocampus: Cannabidiol Blunts Δ9-Tetrahydrocannabinol-Induced Cognitive Impairment

“At present, clinical interest in the plant-derived cannabinoid compound cannabidiol (CBD) is rising exponentially, since it displays multiple therapeutic properties. In addition, CBD can counteract the undesirable effects of the psychoactive cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) that hinder clinical development of cannabis-based therapies. Here, by combining in vivo and complementary molecular techniques, we demonstrate for the first time that CBD blunts the Δ9-THC-induced cognitive impairment in an adenosine A2A receptor (A2AR)-dependent manner. Overall, these data provide new evidence regarding the mechanisms of action of CBD and the nature of A2AR-CB1R interactions in the brain.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Theoretical Explanation for Reduced Body Mass Index and Obesity Rates in Cannabis Users

View details for Cannabis and Cannabinoid Research cover image

“Obesity is treatment-resistant, and is linked with a number of serious, chronic diseases. Adult obesity rates in the United States have tripled since the early 1960s.

Recent reviews show that an increased ratio of omega-6 to omega-3 fatty acids contributes to obesity rates by increasing levels of the endocannabinoid signals AEA and 2-AG, overstimulating CB1R and leading to increased caloric intake, reduced metabolic rates, and weight gain.

Cannabis, or THC, also stimulates CB1R and increases caloric intake during acute exposures.

The present meta-analysis reveals significantly reduced body mass index and rates of obesity in Cannabis users, in conjunction with increased caloric intake.

We provide for the first time a causative explanation for this paradox, in which rapid and long-lasting downregulation of CB1R following acute Cannabis consumption reduces energy storage and increases metabolic rates, thus reversing the impact on body mass index of elevated dietary omega-6/omega-3 ratios.

Evidence suggests that, in the United States, many people may actually achieve net health benefits from moderate Cannabis use, due to reduced risk of obesity and associated diseases.”

https://www.liebertpub.com/doi/10.1089/can.2018.0045?_ga=2.221453528.1791159238.1546024140-1083808004.1546024140

“Reduced Body Mass Index and Obesity Rates in Cannabis Users”  https://www.genengnews.com/insights/reduced-body-mass-index-and-obesity-rates-in-cannabis-users/?fbclid=IwAR3a0wbfGoPwAR-pYQGCeLz-KYUFdiLJoj6Ja7rTTNGBYwkjIGw1fUjf5LI

 

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

An experimental randomized study on the analgesic effects of pharmaceutical-grade cannabis in chronic pain patients with fibromyalgia.

 

Image result for ovid journal

“In this experimental randomized placebo-controlled 4-way crossover trial, we explored the analgesic effects of inhaled pharmaceutical-grade cannabis in twenty chronic pain patients with fibromyalgia.

We tested four different cannabis varieties with exact knowledge on their [INCREMENT]-tetrahydrocannabinol (THC), and cannabidiol (CBD) content: Bedrocan® (22.4 mg THC, < 1 mg CBD), Bediol® (13.4 mg THC, 17.8 mg CBD), Bedrolite® (18.4 mg CBD, < 1 mg THC) and a placebo variety without any THC or CBD.

Following a single vapor inhalation, THC and CBD plasma concentrations, pressure and electrical pain thresholds, spontaneous pain scores and drug high were measured for 3 hours. None of the treatments had an effect greater than placebo on spontaneous or electrical pain responses, although more subjects receiving Bediol® displayed a 30% decrease in pain scores compared to placebo (90% vs. 55% of patients, p = 0.01), with spontaneous pain scores correlating with the magnitude of drug high (ρ = -0.5, p < 0.001). Cannabis varieties containing THC caused a significant increase in pressure pain threshold relative to placebo (p < 0.01). CBD inhalation increased THC plasma concentrations but diminished THC-induced analgesic effects, indicative of a synergistic pharmacokinetic but antagonistic pharmacodynamic interactions of THC and CBD.

This experimental trial shows the complex behavior of inhaled cannabinoids in chronic pain patients with just small analgesic responses after a single inhalation. Further studies are needed to determine long-term treatment effects on spontaneous pain scores, THC-CBD interactions and the role of psychotropic symptoms on pain relief.”

https://www.ncbi.nlm.nih.gov/pubmed/30585986

https://insights.ovid.com/crossref?an=00006396-900000000-98794

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous