Activating Cannabinoid Receptor 2 Protects Against Diabetic Cardiomyopathy Through Autophagy Induction.

 Image result for frontiers in pharmacology

“Cannabinoid receptor 2 (CB2) has been reported to produce a cardio-protective effect in cardiovascular diseases such as myocardial infarction. Here in this study, we investigated the role of CB2 in diabetic cardiomyopathy (DCM) and its underlying mechanisms.

In conclusion, we initially demonstrated that activating CB2 produced a cardio-protective effect in DCM as well as cardiomyocytes under HG challenge through inducing the AMPK-mTOR-p70S6K signaling-mediated autophagy.”

https://www.ncbi.nlm.nih.gov/pubmed/30459625

“Taken together, in this study, we initially showed that activating CB2 produced a cardio-protective effect in DCM as well as cardiomyocytes under HG challenge through the induction of the AMPK-mTOR-p70S6K signaling-mediated autophagy process. We believe that the findings of this study might enhance our knowledge on the understanding of the pathogenesis and progression of DCM and provide a novel insight in the development of therapeutic strategies against DCM.”

https://www.frontiersin.org/articles/10.3389/fphar.2018.01292/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

A systematic review on the neuroprotective perspectives of beta-caryophyllene.

Image result for phytother res

“Beta (β)-caryophyllene (BCAR) is a major sesquiterpene of various plant essential oils reported for several important pharmacological activities, including antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, antimicrobial, and immune-modulatory activity. Recent studies suggest that it also possesses neuroprotective effect.

This study reviews published reports pertaining to the neuropharmacological activities of BCAR. Databases such as PubMed, Scopus, MedLine Plus, and Google Scholar with keywords “beta (β)-caryophyllene” and other neurological keywords were searched. Data were extracted by referring to articles with information about the dose or concentration/route of administration, test system, results and discussion, and proposed mechanism of action.

A total of 545 research articles were recorded, and 41 experimental studies were included in this review, after application of exclusion criterion. Search results suggest that BCAR exhibits a protective role in a number of nervous system-related disorders including pain, anxiety, spasm, convulsion, depression, alcoholism, and Alzheimer’s disease.

Additionally, BCAR has local anesthetic-like activity, which could protect the nervous system from oxidative stress and inflammation and can act as an immunomodulatory agent. Most neurological activities of this natural product have been linked with the cannabinoid receptors (CBRs), especially the CB2R. This review suggests a possible application of BCAR as a neuroprotective agent.”

https://www.ncbi.nlm.nih.gov/pubmed/30281175

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.” http://www.ncbi.nlm.nih.gov/pubmed/23138934

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids, the Heart of the Matter

Image result for jaha journal

“Cardiovascular disease (CVD) is a global epidemic representing the leading cause of death in some Western countries. Endocannabinoids and cannabinoid‐related compounds may be a promising approach as therapeutic agents for cardiovascular diseases. This review highlights the potential of cannabinoids and their receptors as targets for intervention.

In summary, the endocannabinoid system is highly active in cardiovascular disease states. Modulation of the ECS, CB1, and TRPV1 antagonism, as well as CB2 agonism, have proven to modulate disease state and severity in CVD. Studies are underway to develop drugs to change the course of cardiovascular diseases.

If therapeutic potential resides in a single molecule component or a derivative, then production and regulation of the therapy are straightforward. If the efficacious agent is a complex mixture that reflects some or all of the secondary metabolome complexity of Cannabis sativa, then safe and consistent production become challenging.”  http://jaha.ahajournals.org/content/7/14/e009099https://www.ncbi.nlm.nih.gov/pubmed/30006489

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Relation of Cannabis Use and Atrial Fibrillation Among Patients Hospitalized for Heart Failure.

 The American Journal of Cardiology

“Left ventricular dysfunction triggers the activation of the sympathetic nervous system, providing inotropic support to the failing heart and concomitantly increasing the risk of atrial fibrillation (AF). The cardiovascular effects of cannabis have been characterized as biphasic on the autonomic nervous system with an increased sympathetic effect at low doses and an inhibitory sympathetic activity at higher doses. It is unknown if the autonomic effect of cannabis impacts the occurrence of AF in patients with heart failure (HF).

We used data from the Healthcare Cost and Utilization Project-National Inpatient Sample for patients admitted with a diagnosis of HF in 2014. The outcome variable was the diagnosis of AF, with the main exposure being cannabis use. We identified a cannabis user group and a 1:1 propensity-matched non-cannabis user group, each having 3,548 patients. We then estimated the odds of AF diagnosis in cannabis users. An estimated 3,950,392 patients were admitted with a diagnosis of HF in the United States in 2014. Among these, there were 17,755 (0.45%) cannabis users. In the matched cohort, cannabis users were less likely to have AF (19.08% vs 21.39%; AOR 0.87 [0.77 to 0.98]).

In conclusion, cannabis users have lower odds of AF when compared with nonusers, which was not explained by co-morbid conditions, age, insurance type, and socioeconomic status.”

https://www.ncbi.nlm.nih.gov/pubmed/29685570

“Surprising Find: Marijuana Linked with Benefits for Heart Failure Patients. Heart failure patients who used marijuana were also less likely to die in the hospital than those who didn’t use the drug, the study found.”  https://www.livescience.com/60988-marijuana-heart-failure.html

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Endocannabinoid System and Heart Disease: The Role of Cannabinoid Receptor Type 2.

Image result for Cardiovasc Hematol Disord Drug Targets.

“Decades of research has provided evidence for the role of the endocannabinoid system in human health and disease. This versatile system, consisting of two receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and metabolic enzymes has been implicated in a wide variety of disease states, ranging from neurological disorders to cancer.

CB2 has gained much interest for its beneficial immunomodulatory role that can be obtained without eliciting psychotropic effects through CB1. Recent studies have shed light on a protective role of CB2 in cardiovascular disease, an ailment which currently takes more lives each year in Western countries than any other disease or injury.

By use of CB2 knockout mice and CB2-selective ligands, knowledge of how CB2 signaling affects atherosclerosis and ischemia has been acquired, providing a major stepping stone between basic science and translational clinical research.

Here, we summarize the current understanding of the endocannabinoid system in human pathologies and provide a review of the results from preclinical studies examining its function in cardiovascular disease, with a particular emphasis on possible CB2-targeted therapeutic interventions to alleviate atherosclerosis.”

https://www.ncbi.nlm.nih.gov/pubmed/29412125

“Researchers suggest that THC and other cannabinoids, which are active at CB2, the cannabinoid receptor expressed on immune cells, may be valuable in treating atherosclerosis.” https://www.medscape.com/viewarticle/787468

“Cardiovascular disease: New use for cannabinoids”  https://www.nature.com/articles/nrd1733

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Abnormal cannabidiol confers cardioprotection in diabetic rats independent of glycemic control.

Cover image

“Chronic GPR18 activation by its agonist abnormal cannabidiol (trans-4-[3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]-5-pentyl-1,3-benzenediol; abn-cbd) improves myocardial redox status and function in healthy rats.

Here, we investigated the ability of abn-cbd to alleviate diabetes-evoked cardiovascular pathology and the contribution of GPR18 to this effect.

Collectively, the current findings present evidence for abn-cbd alleviation of diabetes-evoked cardiovascular anomalies likely via GPR18 dependent restoration of cardiac adiponectin-Akt-eNOS signaling and the diminution of myocardial oxidative stress.”

https://www.ncbi.nlm.nih.gov/pubmed/29274332

http://www.sciencedirect.com/science/article/pii/S0014299917308336

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Δ9-Tetrahydrocannabinol Prevents Cardiovascular Dysfunction in STZ-Diabetic Wistar-Kyoto Rats.

Image result for hindawi journal

“The aim of this study was to determine if chronic, low-dose administration of a nonspecific cannabinoid receptor agonist could provide cardioprotective effects in a model of type I diabetes mellitus.

Δ9-Tetrahydrocannabinol administration to diabetic animals significantly reduced blood glucose concentrations and attenuated pathological changes in serum markers of oxidative stress and lipid peroxidation. Positive changes to biochemical indices in diabetic animals conferred improvements in myocardial and vascular function.

This study demonstrates that chronic, low-dose administration of Δ9-tetrahydrocannabinol can elicit antihyperglycaemic and antioxidant effects in diabetic animals, leading to improvements in end organ function of the cardiovascular system. Implications from this study suggest that cannabinoid receptors may be a potential new target for the treatment of diabetes-induced cardiovascular disease.”   https://www.ncbi.nlm.nih.gov/pubmed/29181404

“The aim of this study was to determine if a nonspecific cannabinoid receptor agonist could provide cardioprotective effects in a model of type I diabetes mellitus. Outcomes from this study indicate that THC administration to STZ improved functional parameters of cardiovascular health by reducing oxidative stress, lipid peroxidation, and blood glucose levels. These results indicate that activation of cannabinoid receptors may be a viable experimental target for the prevention of oxidative stress-induced complications in type I diabetes mellitus.”  https://www.hindawi.com/journals/bmri/2017/7974149/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Activation of cannabinoid receptor type II by AM1241 protects adipose-derived mesenchymal stem cells from oxidative damage and enhances their therapeutic efficacy in myocardial infarction mice via Stat3 activation.

Related image

“The poor survival of cells in ischemic sites diminishes the therapeutic efficacy of stem cell therapy. Previously we and others have reported that Cannabinoid receptor type II (CB2) is protective during heart ischemic injury for its anti-oxidative activity. However, whether CB2 activation could improve the survival and therapeutic efficacy of stem cells in ischemic myocardium and the underlying mechanisms remain elusive.

Here, we showed evidence that CB2 agonist AM1241 treatment could improve the functional survival of adipose-derived mesenchymal stem cells (AD-MSCs) in vitro as well as in vivo. Moreover, AD-MSCs adjuvant with AM1241 improved cardiac function, and inhibited cardiac oxidative stress, apoptosis and fibrosis. To unveil possible mechanisms, AD-MSCs were exposed to hydrogen peroxide/serum deprivation to simulate the ischemic environmentin myocardium. Results delineated that AM1241 blocked the apoptosis, oxidative damage and promoted the paracrine effects of AD-MSCs. Mechanistically, AM1241 activated signal transducers and activators of transcription 3 (Stat3) through the phosphorylation of Akt and ERK1/2. Moreover, the administration of AM630, LY294002, U0126 and AG490 (inhibitors for CB2, Akt, ERK1/2 and Stat3, respectively) could abolish the beneficial actions of AM1241.

Our result support the promise of CB2 activation as an effective strategy to optimize stem cell-based therapy possibly through Stat3 activation.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Endocannabinoids: new targets for drug development.

“The possible therapeutic use of marijuana s active principles, the cannabinoids, is currently being debated.

It is now known that these substances exert several of their pharmacological actions by activating specific cell membrane receptors, the CB1 and CB2 cannabinoid receptor subtypes.

This knowledge led to the design of synthetic cannabinoid agonists and antagonists with high therapeutic potential.

The recent discovery of the endocannabinoids, i.e. endogenous metabolites capable of activating the cannabinoid receptors, and the understanding of the molecular mechanisms leading to their biosynthesis and inactivation, opened a new era in research on the pharmaceutical applications of cannabinoids.

Ongoing studies on the pathological and physiological conditions regulating the tissue levels of endocannabinoids, and on the pharmacological activity of these compounds and their derivatives, may provide a lead for the development of new drugs for the treatment of nervous and immune disorders, cardiovascular diseases, pain, inflammation and cancer.

These studies are reviewed in this article with special emphasis on the chemical features that determine the interaction of endocannabinoids with the proteins mediating their activity and degradation.”

http://www.ncbi.nlm.nih.gov/pubmed/10903398

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory and cell death signaling pathways in diabetic cardiomyopathy

Logo of nihpa

“CBD, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts antiinflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans.

In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrosative stress, cell death and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose.

 A previous study has demonstrated cardiac protection by CBD in myocardial ischemic reperfusion injury; therefore, we have investigated the potential protective effects of CBD in diabetic hearts and in primary human cardiomyocytes exposed to high glucose.
Our findings underscore the potential of CBD for the prevention/treatment of diabetic complications.
Collectively, these results coupled with the excellent safety and tolerability profile of cannabidiol in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrosative stress, inflammation, cell death and fibrosis.”
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous