Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System.


“The biological effects of cannabinoids, the major constituents of the ancient medicinal plant Cannabis sativa (marijuana) are mediated by two members of the G-protein coupled receptor family, cannabinoid receptors 1 (CB1R) and 2. The CB1R is the prominent subtype in the central nervous system (CNS) and has drawn great attention as a potential therapeutic avenue in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Furthermore, cannabinoids also modulate signal transduction pathways and exert profound effects at peripheral sites. Although cannabinoids have therapeutic potential, their psychoactive effects have largely limited their use in clinical practice. In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, focusing on the CB1R and the CNS, with emphasis on recent breakthroughs in the field. We aim to define several potential roles of cannabinoid receptors in the modulation of signaling pathways and in association with several pathophysiological conditions. We believe that the therapeutic significance of cannabinoids is masked by the adverse effects and here alternative strategies are discussed to take therapeutic advantage of cannabinoids.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Absence of cannabinoid 1 receptor in beta cells protects against high-fat/high-sugar diet-induced beta cell dysfunction and inflammation in murine islets.


“The cannabinoid 1 receptor (CB1R) regulates insulin sensitivity and glucose metabolism in peripheral tissues. CB1R is expressed on pancreatic beta cells and is coupled to the G protein Gαi, suggesting a negative regulation of endogenous signalling in the beta cell.

To assess the direct contribution of beta cell CB1R to metabolism, we designed a mouse model that allows us to determine the role of CB1R specifically in beta cells in the context of whole-body metabolism.


Our data demonstrate CB1R to be a negative regulator of beta cell function and a mediator of islet inflammation under conditions of metabolic stress. Our findings point to beta cell CB1R as a therapeutic target, and broaden its potential to include anti-inflammatory effects in both major forms of diabetes.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Targeting the endocannabinoid system as a potential anticancer approach.

Publication Cover

“The endocannabinoid system is currently under intense investigation due to the therapeutic potential of cannabinoid-based drugs as treatment options for a broad variety of diseases including cancer.

Besides the canonical endocannabinoid system that includes the cannabinoid receptors CB1 and CB2 and the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, recent investigations suggest that other fatty acid derivatives, receptors, enzymes, and lipid transporters likewise orchestrate this system as components of the endocannabinoid system when defined as an extended signaling network.

As such, fatty acids acting at cannabinoid receptors (e.g. 2-arachidonoyl glyceryl ether [noladin ether], N-arachidonoyldopamine) as well as endocannabinoid-like substances that do not elicit cannabinoid receptor activation (e.g. N-palmitoylethanolamine, N-oleoylethanolamine) have raised interest as anticancerogenic substances.

Furthermore, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid binding protein family, additional cannabinoid-activated G protein-coupled receptors, members of the transient receptor potential family as well as peroxisome proliferator-activated receptors have been considered as targets of antitumoral cannabinoid activity. Therefore, this review focused on the antitumorigenic effects induced upon modulation of this extended endocannabinoid network.”

“Anticancer mechanisms of cannabinoids”
“Cannabinoids as Anticancer Drugs.”
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

LH-21 and Abn-CBD improve β-cell function in isolated human and mouse islets through GPR55-dependent and -independent signalling.

Diabetes, Obesity and Metabolism

“CB1 and GPR55 are GPCRs expressed by islet β-cells. Pharmacological compounds have been used to investigate their function, but off-target effects of ligands have been reported.

This study examined the effects of Abn-CBD (GPR55 agonist) and LH-21 (CB1 antagonist) on human and mouse islet function, and islets from GPR55-/- mice were used to determine signalling via GPR55.


Abn-CBD potentiated glucose-stimulated insulin secretion and elevated [Ca2+ ]i in human islets and islets from both GPR55+/+ and GPR55-/- mice. LH-21 also increased insulin secretion and [Ca2+ ]i in human islets and GPR55+/+ mouse islets, but concentrations of LH-21 up to 0.1 μM were ineffective in islets from GPR55-/- mice. Neither ligand affected basal insulin secretion or islet cAMP levels. Abn-CBD and LH-21 reduced cytokine-induced apoptosis in human islets and GPR55+/+ mouse islets, and these effects were suppressed following GPR55 deletion. They also increased β-cell proliferation: the effects of Abn-CBD were preserved in islets from GPR55-/- mice, while those of LH-21 were abolished. Abn-CBD and LH-21 increased AKT phosphorylation in mouse and human islets.


This study demonstrated that Abn-CBD and LH-21 improve human and mouse islet β-cell function and viability. Use of islets from GPR55-/- mice suggests that designation of Abn-CBD and LH-21 as GPR55 agonist and CB1 antagonist, should be revised.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Regulation of noradrenergic and serotonergic systems by cannabinoids: relevance to cannabinoid-induced effects.

Cover image

“The cannabinoid system is composed of Gi/o protein-coupled cannabinoid type 1 receptor (CB1) and cannabinoid type 2 (CB2) receptor and endogenous compounds. The CB1 receptor is widely distributed in the central nervous system (CNS) and it is involved in the regulation of common physiological functions. At the neuronal level, the CB1 receptor is mainly placed at GABAergic and glutamatergic axon terminals, where it modulates excitatory and inhibitory synapses. To date, the involvement of CB2 receptor in the regulation of neurotransmission in the CNS has not been clearly shown. The majority of noradrenergic (NA) cells in mammalian tissues are located in the locus coeruleus (LC) while serotonergic (5-HT) cells are mainly distributed in the raphe nuclei including the dorsal raphe nucleus (DRN). In the CNS, NA and 5-HT systems play a crucial role in the control of pain, mood, arousal, sleep-wake cycle, learning/memory, anxiety, and rewarding behaviour. This review summarizes the electrophysiological, neurochemical and behavioural evidences for modulation of the NA/5-HT systems by cannabinoids and the CB1 receptor. Cannabinoids regulate the neuronal activity of NA and 5-HT cells and the release of NA and 5-HT by direct and indirect mechanisms. The interaction between cannabinoid and NA/5-HT systems may underlie several behavioural changes induced by cannabis such as anxiolytic and antidepressant effects or side effects (e.g. disruption of attention). Further research is needed to better understand different aspects of NA and 5-HT systems regulation by cannabinoids, which would be relevant for their use in therapeutics.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Synthesis of Photoswitchable Δ9-Tetrahydrocannabinol Derivatives Enables Optical Control of Cannabinoid Receptor 1 Signaling.

Journal of the American Chemical Society

“The cannabinoid receptor 1 (CB1) is an inhibitory G protein-coupled receptor abundantly expressed in the central nerv-ous system. It has rich pharmacology and largely accounts for the recreational use of cannabis. We describe efficient asymmetric syntheses of four photoswitchable Δ9-tetrahydrocannabinol derivatives (azo-THCs) from a central building block 3-Br-THC. Using electrophysiology and a FRET-based cAMP assay, two compounds are identified as potent CB1 agonists that change their effect upon illumination. As such, azo-THCs enable CB1-mediated optical control of inwardly-rectifying potassium channels, as well as adenylyl cyclase.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Involvement of cannabinoid receptor type 2 in light-induced degeneration of cells from mouse retinal cell line in vitro and mouse photoreceptors in vivo.

Experimental Eye Research

“Earlier studies showed that the expressions of the agonists of the cannabinoid receptors are reduced in the vitreous humor of patients with age-related macular degeneration (AMD), and the cannabinoid type 2 receptor is present in the retinas of rats and monkeys. The purpose of this study was to determine whether the cannabinoid type 2 receptor is involved in the light-induced death of cultured 661W cells, an immortalized murine retinal cell line, and in the light-induced retinal degeneration in mice.

Time-dependent changes in the expression and location of retinal cannabinoid type 2 receptor were determined by Western blot and immunostaining. The cannabinoid type 2 receptor was down-regulated in murine retinae and cone cells. In the in vitro studies, HU-308, a cannabinoidtype 2 receptor agonist, had a protective effect on the light-induced death of 661W cells, and this effect was attenuated by SR144528, a cannabinoid type 2 receptor antagonist.

Because the cannabinoid type 2 receptor is a G-protein coupled receptor and is coupled with Gi/o protein, we investigated the effects of the cAMP-dependent protein kinase (PKA). HU-308 and H89, a PKA inhibitor, deactivated PKA in retinal cone cells, and H89 also suppressed light-induced cell death. For the in vivo studies, a cannabinoid type 2 receptor agonist, HU-308, or an antagonist, SR144528, was injected intravitreally into mouse eyes before the light exposure. Electroretinography was used to determine the physiological status of the retinas. Injection of HU-308 improved the a- and b-waves of the ERGs and also the thickness of the outer nuclear layer of the murine retina after light exposure.

These findings indicate that the cannabinoid type 2 receptor is involved in the light-induced retinal damage through PKA signaling. Thus, activation of cannabinoidtype 2 receptor may be a therapeutic approach for light-associated retinal diseases.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Characterization of endocannabinoids and related acylethanolamides in the synovial fluid of dogs with osteoarthritis: a pilot study.

 Image result for bmc veterinary research

“Cannabis-based drugs have been shown to be effective in inflammatory diseases.

A number of endocannabinoids including N- arachidonoylethanolamide (anandamide, AEA) and 2-arachidonyl glycerol (2-AG) with activity at the cannabinoidreceptors (CBR) CBR1 and CBR2, have been identified. Other structurally related endogenous fatty acid compounds such as oleoylethanolamide (OEA) and palmitoyl ethanolamide (PEA) have been identified in biological tissues.

These compounds do not bind to CBR but might be involved in facilitating the actions of directly acting endocannabinoids and thus are commonly termed “entourage” compounds due to their ability to modulate the endocannabinoid system.

The aim of this study was to evaluate the presence of endocannabinoids and entourage compounds in the synovial fluid of dogs with osteoarthritis subjected to arthrotomy of the knee joint. Cytokines and cytology were studied as well.

AEA, 2-AG, OEA and PEA were all present in the synovial fluid of arthritic knees and in the contralateral joints; in addition, a significant increase of OEA and 2AG levels were noted in SF from OA knees when compared to the contralateral joints.

The identification and quantification of endocannabinoids and entourage compounds levels in synovial fluids from dogs with OA of the knee is reported for the first time. Our data are instrumental for future studies involving a greater number of dogs. Cannabinoids represent an emerging and innovative pharmacological tool for the treatment of OA and further studies are warranted to evaluate the effectiveness of cannabinoids in veterinary medicine.”

“The ECS can be exploited as a potential therapeutic option for OA. We have demonstrated the presence of AEA, 2-AG, OEA and PEA in the SF of dogs with OA. Our data open the avenue to future studies involving a higher number of dogs and aimed at defining the role played by these compounds in OA of the dogs. Both plant-derived and synthetic agonists of CBRs represent an emerging and innovative pharmacological tool for the treatment of OA. ”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Binding and Signaling Studies Disclose a Potential Allosteric Site for Cannabidiol in Cannabinoid CB2 Receptors.

 Image result for frontiers in pharmacology

“The mechanism of action of cannabidiol (CBD), the main non-psychotropic component of Cannabis sativa L., is not completely understood. First assumed that the compound was acting via cannabinoid CB2 receptors (CB2Rs) it is now suggested that it interacts with non-cannabinoid G-protein-coupled receptors (GPCRs); however, CBD does not bind with high affinity to the orthosteric site of any GPCR.

To search for alternative explanations, we tested CBD as a potential allosteric ligand of CB2R. Radioligand and non-radioactive homogeneous binding, intracellular cAMP determination and ERK1/2 phosphorylation assays were undertaken in heterologous systems expressing the human version of CB2R.

These results may help to understand CBD mode of action and may serve to revisit its therapeutic possibilities.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Parameters of the Endocannabinoid System as Novel Biomarkers in Sepsis and Septic Shock.


“Sepsis represents a dysregulated immune response to infection, with a continuum of severity progressing to septic shock. This dysregulated response generally follows a pattern by which an initial hyperinflammatory phase is followed by a state of sepsis-associated immunosuppression.

Major challenges in improving sepsis care include developing strategies to ensure early and accurate identification and diagnosis of the disease process, improving our ability to predict outcomes and stratify patients, and the need for novel sepsis-specific treatments such as immunomodulation.

Biomarkers offer promise with all three of these challenges and are likely also to be the solution to determining a patient’s immune status; something that is critical in guiding effective and safe immunomodulatory therapy. Currently available biomarkers used in sepsis lack sensitivity and specificity, among other significant shortcomings.

The endocannabinoid system (ECS) is an emerging topic of research with evidence suggesting a ubiquitous presence on both central and peripheral tissues, including an intrinsic link with immune function. This review will first discuss the state of sepsis biomarkers and lack of available treatments, followed by an introduction to the ECS and a discussion of its potential to provide novel biomarkers and treatments.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous