Pharmacokinetics of Phytocannabinoid Acids and Anticonvulsant Effect of Cannabidiolic Acid in a Mouse Model of Dravet Syndrome.

 Go to Volume 0, Issue 0“Cannabis sativa produces a complex mixture of many bioactive molecules including terpenophenolic compounds known as phytocannabinoids. Phytocannabinoids come in neutral forms (e.g., Δ9-tetrahydrocannabinol, THC; cannabidiol, CBD; etc.) or as acid precursors, which are dominant in the plant (e.g., Δ9-tetrahydrocannabinolic acid, THCA; cannabidiolic acid, CBDA; etc.).

There is increasing interest in unlocking the therapeutic applications of the phytocannabinoid acids; however, the present understanding of the basic pharmacology of phytocannabinoid acids is limited. Herein the brain and plasma pharmacokinetic profiles of CBDA, THCA, cannabichromenic acid (CBCA), cannabidivarinic acid (CBDVA), cannabigerolic acid (CBGA), and cannabigerovarinic acid (CBGVA) were examined following intraperitoneal administration in mice.

Next it was examined whether CBDA was anticonvulsant in a mouse model of Dravet syndrome (Scn1aRX/+ mice). All the phytocannabinoid acids investigated were rapidly absorbed with plasma tmax values of between 15 and 45 min and had relatively short half-lives (<4 h). The brain-plasma ratios for the acids were very low at ≤0.04. However, when CBDA was administered in an alternate Tween 80-based vehicle, it exhibited a brain-plasma ratio of 1.9. The anticonvulsant potential of CBDA was examined using this vehicle, and it was found that CBDA significantly increased the temperature threshold at which the Scn1aRX/+ mice had a generalized tonic-clonic seizure.”

https://www.ncbi.nlm.nih.gov/pubmed/31686510

https://pubs.acs.org/doi/abs/10.1021/acs.jnatprod.9b00600

Abstract Image

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Coadministered cannabidiol and clobazam: Preclinical evidence for both pharmacodynamic and pharmacokinetic interactions.

Epilepsia banner“Cannabidiol (CBD) has been approved by the US Food and Drug Administration (FDA) to treat intractable childhood epilepsies, such as Dravet syndrome and Lennox-Gastaut syndrome. However, the intrinsic anticonvulsant activity of CBD has been questioned due to a pharmacokinetic interaction between CBD and a first-line medication, clobazam. This recognized interaction has led to speculation that the anticonvulsant efficacy of CBD may simply reflect CBD augmenting clobazam exposure. The present study aimed to address the nature of the interaction between CBD and clobazam.

RESULTS:

CBD potently inhibited CYP3A4 mediated metabolism of clobazam and CYP2C19 mediated metabolism of N-CLB. Combination CBD-clobazam treatment resulted in greater anticonvulsant efficacy in Scn1a+/- mice, but only when an anticonvulsant dose of CBD was used. It is important to note that a sub-anticonvulsant dose of CBD did not promote greater anticonvulsant effects despite increasing plasma clobazam concentrations. In addition, we delineated a novel pharmacodynamic mechanism where CBD and clobazam together enhanced inhibitory GABAA receptor activation.

SIGNIFICANCE:

Our study highlights the involvement of both pharmacodynamic and pharmacokinetic interactions between CBD and clobazam that may contribute to its efficacy in Dravet syndrome.”

https://www.ncbi.nlm.nih.gov/pubmed/31625159

“Our results here suggest a novel benefit of CBD and clobazam combination therapy on premature death, a devastating aspect of the Dravet syndrome phenotype.”

https://onlinelibrary.wiley.com/doi/full/10.1111/epi.16355

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol: A Review of Clinical Efficacy and Safety in Epilepsy.

Pediatric Neurology

“Several new antiepileptic medicines became available for clinical use in the last two decades. However, the prognosis of epilepsy remains unchanged, with approximately one-third of patients continuing to have drug-resistant seizures. Because many of these patients are not candidates for curative epilepsy surgery, there is a need for new seizure medicines with better efficacy and safety profile.

Recently, social media and public pressure sparked a renewed interest in cannabinoids, which had been used for epilepsy since ancient times. However, physicians have significant difficulty prescribing cannabinoids freely because of the paucity of sound scientific studies.

Among the two most common cannabinoids, cannabidiol has better antiepileptic potential than tetrahydrocannabinol. The exact antiepileptic mechanism of cannabidiol is currently not known, but it modulates a number of endogenous systems and may have a novel anticonvulsant effect. However, it has broad drug-drug interactions with several agents, including inducer and inhibitor of CYP3A4 or CYP2C19. Cannabidiol can cause liver enzyme elevation, especially when co-administered with valproate.

The US Food and Drug Administration (FDA) has approved pharmaceutical-grade cannabidiol oil for two childhood-onset catastrophic epilepsies: Dravet syndrome and Lennox-Gastaut syndrome.

The Drug Enforcement Agency also reclassified this product as a schedule V agent. However, other cannabidiol products remain as a schedule I substance and are primarily used without regulation. Additionally, the FDA-approved pharmaceutical-grade cannabidiol oil is expensive, and insurance companies might approve this only for the designated indications.

In despair, many individuals may resort to unregulated medical cannabis products in an attempt to control seizures. Rather than spontaneous treatment without medical supervision, adequate medical oversight is indicated to monitor and manage the proper dose, side effects, validity of the product, and drug-drug interactions.”

https://www.ncbi.nlm.nih.gov/pubmed/31053391

https://www.pedneur.com/article/S0887-8994(18)31168-8/fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol as adjunctive treatment of seizures associated with Lennox-Gastaut syndrome and Dravet syndrome.

“Epilepsy is one of the most common chronic disorders of the brain affecting around 70 million people worldwide. Treatment is mainly symptomatic, and most patients achieve long-term seizure control. Up to one-third of the affected subjects, however, are resistant to anticonvulsant therapy.

Lennox-Gastaut syndrome (LGS) and Dravet syndrome (DS) are severe, refractory epilepsy syndromes with onset in early childhood. Currently available interventions fail to control seizures in most cases, and there remains the need to identify new treatments.

Cannabidiol (CBD) is the first in a new class of antiepileptic drugs. It is a major chemical of the cannabis plant, which has antiseizure properties in absence of psychoactive effects.

This article provides a critical review of the pharmacology of CBD and the most recent clinical studies that evaluated its efficacy and safety as adjunctive treatment of seizures associated with LGS and DS.”

https://www.ncbi.nlm.nih.gov/pubmed/30938373

https://journals.prous.com/journals/servlet/xmlxsl/pk_journals.xml_summary_pr?p_JournalId=4&p_RefId=2909248&p_IsPs=N

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Intractable Generalized Epilepsy: Therapeutic Approaches.

 

“PURPOSE OF REVIEW:

To summarize recent developments in therapeutic options, both medical and surgical, for patients with drug-resistant generalized epilepsy syndromes, which continue to be a multifaceted challenge for patients and physicians.

RECENT FINDINGS:

Newer generation pharmaceutical options are now available, such as brivaracetam, rufinamide, lacosamide, perampanel, and cannabidiol. Less restrictive dietary options appear to be nearly as effective as classic ketogenic diet for amelioration of seizures. The latest implantable devices include responsive neurostimulation and deep brain stimulation. Corpus callosotomy is an effective treatment for some seizure types, and newer and less invasive approaches are being explored. Resective surgical options have demonstrated success in carefully selected patients despite generalized electrographic findings on electroencephalogram. The current literature reflects a widening range of clinical experience with newer anticonvulsant medications including cannabinoids, dietary therapies, surgical approaches, and neurostimulation devices for patients with intractable generalized epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/30806817

https://link.springer.com/article/10.1007%2Fs11910-019-0933-z

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Activation of ATP-sensitive K-channel promotes the anticonvulsant properties of cannabinoid receptor agonist through mitochondrial ATP level reduction.

“Cannabinoid receptor (CBR) agonist could act as a protective agent against seizure susceptibility in animal models of epilepsy.

Studies have shown that potassium channels could play a key role in ameliorating neuronal excitability.

In this study, we attempted to evaluate how CBRs and Adenosine Tri-Phosphate (ATP)-sensitive potassium channels collaborate to affect seizure susceptibility by changing the clonic seizure threshold (CST).

In conclusion, CB1 agonist accomplishes at least a part of its anticonvulsant actions through ATP-sensitive potassium channels, probably by decreasing the mitochondrial ATP level to open the potassium channel to induce its anticonvulsant effect.”

https://www.ncbi.nlm.nih.gov/pubmed/30776677

https://linkinghub.elsevier.com/retrieve/pii/S1525505018308503

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Preclinical safety and efficacy of cannabidivarin for early life seizures.

Neuropharmacology

“A significant proportion of neonatal and childhood seizures are poorly controlled by existing anti-seizure drugs (ASDs), likely due to prominent differences in ionic homeostasis and network connectivity between the immature and mature brain. In addition to the poor efficacy of current ASDs, many induce apoptosis, impair synaptic development, and produce behavioral deficits when given during early postnatal development.

There is growing interest in new targets, such as cannabidiol (CBD) and its propyl analog cannabidivarin (CBDV) for early life indications. While CBD was recently approved for treatment of refractory childhood epilepsies, little is known about the efficacy or safety of CBDV.

Here, we addressed this gap through a systematic evaluation of CBDV against multiple seizure models in postnatal day (P) 10 and 20 animals. We also evaluated the impact of CBDV on acute neurotoxicity in immature rats.

CBDV (50-200 mg/kg) displayed an age and model-specific profile of anticonvulsant action.

Finally, CBDV treatment generally avoided induction of neuronal degeneration in immature rats.

Together, the efficacy and safety profile of CBDV suggest it may have therapeutic value for early life seizures.”

https://www.ncbi.nlm.nih.gov/pubmed/30633929

https://www.sciencedirect.com/science/article/pii/S0028390818306786?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids-induced peripheral analgesia depends on activation of BK channels.

 Brain Research“The endogenous cannabinoid system is involved in the physiological inhibitory control of pain and is of particular interest for the development of therapeutic approaches for pain management.

Selective activation of the peripheral CB1 cannabinoid receptor has been shown to suppress the heightened firing of primary afferents, which is the peripheral mechanism underlying neuropathic pain after nerve injury. However, the mechanism underlying this effect of CB1 receptor remains unclear.

The large-conductance calcium-activated potassium (BK) channels have been reported to participate in anticonvulsant and vasorelaxant effects of cannabinoids. We asked whether BK channels participate in cannabinoids-induced analgesia and firing-suppressing effects in primary afferents after nerve injury.

Here, using mice with chronic constriction injury(CCI)-induced neuropathic pain, antinociception action and firing-suppressing effect of HU210 were measured before and after BK channel blocker application. We found that local peripheral application of HU210 alleviated CCI-induced pain behavior and suppressed the heightened firing of injured fibers. Co-administration of IBTX with HU210 significantly reversed the analgesia and the firing-suppressing effect of HU210.

This result indicated that the peripheral analgesic effects of cannabinoids depends on activation of BK channels.”

https://www.ncbi.nlm.nih.gov/pubmed/30615887

https://www.sciencedirect.com/science/article/pii/S0006899319300071?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis-based products for pediatric epilepsy: A systematic review.

Epilepsia banner

“Evidence from high-quality randomized controlled trials (RCTs) suggests that cannabidiol probably reduces seizures among children with drug-resistant epilepsy (moderate certainty).”

https://www.ncbi.nlm.nih.gov/pubmed/30515765 

https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.14608

“Phytocannabinoids produce anticonvulsant effects through the endocannabinoid system, with few adverse effects.” https://www.ncbi.nlm.nih.gov/pubmed/25475762

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

A prospective open-label trial of a CBD/THC cannabis oil in dravet syndrome.

 Annals of Clinical and Translational Neurology banner

“Both Δ9 Tetrahydrocannabidiol (THC) and cannabidiol (CBD) components of cannabis, have been shown to have anticonvulsant effects.

Cannabis oils are used to treat seizures in drug-resistant epilepsy (DRE). Recent trials provide data on dosing, side effects, and efficacy of CBD, yet there is a paucity of information on THC in epilepsy.

Primary objective was to establish dosing and tolerability of TIL-TC150 – a cannabis plant extract produced by Tilray®, containing 100 mg/mL CBD and 2 mg/mL THC- in children with Dravet syndrome. Secondary objectives were to assess impact of therapy on seizures, electroencephalogram (EEG) and quality of life.

RESULTS:

Nineteen participants completed the 20-week intervention. Mean dose achieved was 13.3 mg/kg/day of CBD (range 7-16 mg/kg/day) and 0.27 mg/kg/day of THC (range 0.14-0.32 mg/kg/day). Adverse events, common during titration included somnolence, anorexia, and diarrhea. Abnormalities of liver transaminases and platelets were observed with concomitant valproic acid therapy. There was a statistically significant improvement in quality of life, reduction in EEG spike activity, and median motor seizure reduction of 70.6%, with 50% responder rate of 63%.

CONCLUSIONS:

TIL-TC150 was safe and well tolerated in our subjects. TIL-TC150 treatment resulted in a reduction in seizure counts, spike index on EEG, and improved quality of life measures. This study provides safety and dosing information for THC-containing cannabinoid preparations.”

https://www.ncbi.nlm.nih.gov/pubmed/30250864

https://onlinelibrary.wiley.com/doi/abs/10.1002/acn3.621

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous