Investigating the cumulative effects of Δ9-tetrahydrocannabinol and repetitive mild traumatic brain injury on adolescent rats

 Issue Cover“The prevalence of mild traumatic brain injury is highest amongst the adolescent population and can lead to complications including neuroinflammation and excitotoxicity.

Δ9-Tetrahydrocannabinol, the main psychoactive component of cannabis, is known to have anti-inflammatory properties and serves as a neuroprotective agent against excitotoxicity.

Thus, we investigated the effects of Δ9-tetrahydrocannabinol on recovery when administered either prior to or following repeated mild brain injuries.

We hypothesized that, in both experiments, Δ9-tetrahydrocannabinol administration would provide neuroprotection against mild injury outcomes and confer therapeutic benefit.

Δ9-Tetrahydrocannabinol administration following repeated mild traumatic brain injury was beneficial to three of the six behavioural outcomes affected by injury (reducing anxiety and depressive-like behaviours while also mitigating injury-induced deficits in short-term working memory). Δ9-Tetrahydrocannabinol administration following injury also showed beneficial effects on the expression of Cnr1Comt and Vegf-2R in the hippocampus, nucleus accumbens and prefrontal cortex.

There were no notable benefits of Δ9-tetrahydrocannabinol when administered prior to injury, suggesting that Δ9-tetrahydrocannabinol may have potential therapeutic benefit on post-concussive symptomology when administered post-injury, but not pre-injury.”

https://pubmed.ncbi.nlm.nih.gov/32954298/

 “Overall, this study suggests that THC has potential therapeutic efficacy for the treatment of RmTBI-induced symptomology but requires additional examination.”

https://academic.oup.com/braincomms/article/2/1/fcaa042/5819138

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid-profiled agents improve cell survival via reduction of oxidative stress and inflammation, and Nrf2 activation in a toxic model combining hyperglycemia+Aβ 1-42 peptide in rat hippocampal neurons

Neurochemistry International “Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder linked to various converging toxic mechanisms. Evidence suggests that hyperglycemia induces oxidative stress, mitochondrial dysfunction, inflammation and excitotoxicity, all of which play important roles in the onset and progression of AD pathogenesis.

The endocannabinoid system (ECS) orchestrates major physiological responses, including neuronal plasticity, neuroprotection, and redox homeostasis, to name a few. The multi-targeted effectiveness of the ECS emerges as a potential approach to treat AD.

Here we characterized the protective properties of the endocannabinoids arachidonylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), the synthetic cannabinoids CP 55-940 and WIN 55,212-2, and the fatty acid amide hydrolase (FAAH) inhibitor URB597, on a combined hyperglycemia+oligomeric amyloid β peptide (Aβ1-42) neurotoxic model in primary hippocampal neurons which exhibit several AD features.

All agents tested preserved cell viability and stimulated mitochondrial membrane potential, while reducing all the evaluated toxic endpoints in a differential manner, with URB597 showing the highest efficacy. The neuroprotective efficacy of all cannabinoid agents, except for URB597, led to partial recruitment of specific antioxidant activity and Nrf2 pathway regulation.

Our results support the neuroprotective potential of these agents at low concentrations against the damaging effects of GLU+Aβ1-42, affording new potential modalities for the design of AD therapies.”

https://pubmed.ncbi.nlm.nih.gov/32781098/

“All cannabinoid agents prevented the GLU + Aβ1-42 toxicity in a differential manner. All cannabinoid agents recruited Nrf2 signaling to protect cells.”

https://www.sciencedirect.com/science/article/abs/pii/S0197018620302084?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Treatment of Cognitive, Behavioural and Motor Impairments from Brain Injury and Neurodegenerative Diseases through Cannabinoid System Modulation-Evidence from In Vivo Studies

jcm-logo“Neurological disorders such as neurodegenerative diseases or traumatic brain injury are associated with cognitive, motor and behavioural changes that influence the quality of life of the patients. Although different therapeutic strategies have been developed and tried until now to decrease the neurological decline, no treatment has been found to cure these pathologies.

In the last decades, the implication of the endocannabinoid system in the neurological function has been extensively studied, and the cannabinoids have been tried as a new promising potential treatment. In this study, we aimed to overview the recent available literature regarding in vivo potential of natural and synthetic cannabinoids with underlying mechanisms of action for protecting against cognitive decline and motor impairments.

The results of studies on animal models showed that cannabinoids in traumatic brain injury increase neurobehavioral function, working memory performance, and decrease the neurological deficit and ameliorate motor deficit through down-regulation of pro-inflammatory markers, oedema formation and blood-brain barrier permeability, preventing neuronal cell loss and up-regulating the levels of adherence junction proteins.

In neurodegenerative diseases, the cannabinoids showed beneficial effects in decreasing the motor disability and disease progression by a complex mechanism targeting more signalling pathways further than classical receptors of the endocannabinoid system. In light of these results, the use of cannabinoids could be beneficial in traumatic brain injuries and multiple sclerosis treatment, especially in those patients who display resistance to conventional treatment.”

https://pubmed.ncbi.nlm.nih.gov/32726998/

https://www.mdpi.com/2077-0383/9/8/2395

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Hydroxycinnamic acid derivatives isolated from hempseed and their effects on central nervous system enzymes

 Publication Cover“New neuroprotective treatments of natural origin are being investigated. Both, plant extracts and isolated compounds have shown bioactive effects.

Hempseed is known for its composition of fatty acids, proteins, fibre, vitamins, as well as a large number of phytochemical compounds. After a defatting process of the seeds, hydroxycinnamic acids and its amine derivatives are the majoritarian compounds in an ethyl acetate fraction (EAF).

In the present study, we investigated in vitro effect on neuronal enzymes: MAO-A, MAO-B, tyrosinase and acetylcholinesterase. Besides, the effect of EAF on striatal biogenic amines in mice was evaluated. Both, EAF and isolated compounds (N-trans-caffeoyltyramine and N-trans-coumaroyltyramine), showed inhibitory action on MAO-A, MAO-B and tyrosinase. Furthermore, an increasing of biogenic amines was observed in the corpus striatum of the mice, after administration of EAF.

These findings show that EAF and the hydroxycinnamic acid derivatives may represent a potential treatment in degenerative neuronal diseases.”

https://pubmed.ncbi.nlm.nih.gov/32664762/

https://www.tandfonline.com/doi/abs/10.1080/09637486.2020.1793305?journalCode=iijf20

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Neuroprotection or Neurotoxicity of Illicit Drugs on Parkinson’s Disease

life-logo“Parkinson’s Disease (PD) is currently the most rapid growing neurodegenerative disease and over the past generation, its global burden has more than doubled. The onset of PD can arise due to environmental, sporadic or genetic factors. Nevertheless, most PD cases have an unknown etiology.

Chemicals, such as the anthropogenic pollutant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amphetamine-type stimulants, have been associated with the onset of PD. Conversely, cannabinoids have been associated with the treatment of the symptoms’. PD and medical cannabis is currently under the spotlight, and research to find its benefits on PD is on-going worldwide.”

https://pubmed.ncbi.nlm.nih.gov/32545328/

https://www.mdpi.com/2075-1729/10/6/86

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid 1 Receptor (CB1R) Antagonists Play a Neuroprotective Role in Chronic Alcoholic Hippocampal Injury Related to Pyroptosis Pathway

 Alcoholism: Clinical and Experimental Research“Alcohol use disorders affect millions of people worldwide and there is growing evidence that excessive alcohol intake causes severe damage to the brain of both humans and animals.

Numerous studies on chronic alcohol exposure in animal models have identified that many functional impairments are associated with the hippocampus, which is a structure exhibiting substantial vulnerability to alcohol exposure. However, the precise mechanisms that lead to structural and functional impairments of the hippocampus are poorly understood.

Herein, we report a novel cell death type, namely pyroptosis, which accounts for alcohol neurotoxicity in mice.

Conclusions: Alcohol induces hippocampal pyroptosis, which leads to neurotoxicity thereby indicating that pyroptosis may be an essential pathway involved in chronic alcohol-induced hippocampal neurotoxicity. Further, cannabinoid receptors are regulated during this process, which suggests promising therapeutic strategies against alcohol-induced neurotoxicity through pharmacologic inhibition of CB1R.”

https://pubmed.ncbi.nlm.nih.gov/32524615/

https://onlinelibrary.wiley.com/doi/abs/10.1111/acer.14391

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Antioxidant and Neuroprotective Effects Induced by Cannabidiol and Cannabigerol in Rat CTX-TNA2 Astrocytes and Isolated Cortexes

ijms-logo“Cannabidiol (CBD) and cannabigerol (CBG) are Cannabis sativa terpenophenols.

Although CBD’s effectiveness against neurological diseases has already been demonstrated, nothing is known about CBG. Therefore, a comparison of the effects of these compounds was performed in two experimental models mimicking the oxidative stress and neurotoxicity occurring in neurological diseases.

Rat astrocytes were exposed to hydrogen peroxide and cell viability, reactive oxygen species production and apoptosis occurrence were investigated. Cortexes were exposed to K+ 60 mM depolarizing stimulus and serotonin (5-HT) turnover, 3-hydroxykinurenine and kynurenic acid levels were measured. A proteomic analysis and bioinformatics and docking studies were performed.

Both compounds exerted antioxidant effects in astrocytes and restored the cortex level of 5-HT depleted by neurotoxic stimuli, whereas sole CBD restored the basal levels of 3-hydroxykinurenine and kynurenic acid. CBG was less effective than CBD in restoring the levels of proteins involved in neurotransmitter exocytosis. Docking analyses predicted the inhibitory effects of these compounds towards the neurokinin B receptor.

Conclusion: The results in the in vitro system suggest brain non-neuronal cells as a target in the treatment of oxidative conditions, whereas findings in the ex vivo system and docking analyses imply the potential roles of CBD and CBG as neuroprotective agents.”

https://pubmed.ncbi.nlm.nih.gov/32443623/

https://www.mdpi.com/1422-0067/21/10/3575

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Beneficial effects of the phytocannabinoid Δ9-THCV in L-DOPA-induced dyskinesia in Parkinson’s disease.

Neurobiology of Disease“The antioxidant and CB2 receptor agonist properties of Δ9-tetrahydrocannabivarin (Δ9-THCV) afforded neuroprotection in experimental Parkinson’s disease (PD), whereas its CB1 receptor antagonist profile at doses lower than 5 mg/kg caused anti-hypokinetic effects.

In the present study, we investigated the anti-dyskinetic potential of Δ9-THCV (administered i.p. at 2 mg/kg for two weeks), which had not been investigated before.

In summary, our data support the anti-dyskinetic potential of Δ9-THCV, both to delay the occurrence and to attenuate the magnitude of dyskinetic signs. Although further studies are clearly required to determine the clinical significance of these data in humans, the results nevertheless situate Δ9-THCV in a promising position for developing a cannabinoid-based therapy for patients with PD.”

https://www.ncbi.nlm.nih.gov/pubmed/32387338

“Δ9-THCV exhibited anti-dyskinetic properties in L-DOPA-treated Pitx3ak mutant mice. It delayed the onset of dyskinetic signs and reduced their neurochemical changes. It also reduced their intensity when given once dyskinesia was already present. This potential adds to other properties of Δ9-THCV as antiparkinsonian therapy.

In summary, our data support the anti-dyskinetic potential of Δ9-THCV to ameliorate adverse effects caused by L-DOPA, in particular delaying the occurrence and attenuating the magnitude of dyskinetic signs. This adds to its promising symptom-alleviating and neuroprotective properties described previously. Although further studies are clearly required to determine the clinical significance of these data in humans, the results nevertheless situate Δ9-THCV in a promising position for developing a cannabinoid-based therapy for PD patients.”

https://www.sciencedirect.com/science/article/pii/S0969996120301674?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Overview of cannabidiol (CBD) and its analogues: Structures, biological activities, and neuroprotective mechanisms in epilepsy and Alzheimer’s disease.

European Journal of Medicinal Chemistry“Herein, 11 general types of natural cannabinoids from Cannabis sativa as well as 50 (-)-CBD analogues with therapeutic potential were described. The underlying molecular mechanisms of CBD as a therapeutic candidate for epilepsy and neurodegenerative diseases were comprehensively clarified. CBD indirectly acts as an endogenous cannabinoid receptor agonist to exert its neuroprotective effects. CBD also promotes neuroprotection through different signal transduction pathways mediated indirectly by cannabinoid receptors. Furthermore, CBD prevents the glycogen synthase kinase 3β (GSK-3β) hyperphosphorylation caused by Aβ and may be developed as a new therapeutic candidate for Alzheimer’s disease.”

https://www.ncbi.nlm.nih.gov/pubmed/32109623

“For AD treatment, CBD can rescue the production of neurofibrillary tangles and inhibit neuronal apoptosis.”

https://www.sciencedirect.com/science/article/abs/pii/S0223523420301306?via%3DihubImage 1

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Neuroprotective effect of chronic administration of cannabidiol during the abstinence period on methamphetamine-induced impairment of recognition memory in the rats.

“Neuropsychiatric disorders, such as addiction, are associated with cognitive impairment, including learning and memory deficits.

Previous research has demonstrated that the chronic use of methamphetamine (METH) induces long-term cognitive impairment and cannabidiol (CBD), as a neuroprotectant, can reverse spatial memory deficits induced by drug abuse.

The study aimed to evaluate the effect of CBD on METH-induced memory impairment in rats chronically exposed to METH (CEM).

For the induction of CEM, animals received METH (2 mg/kg, twice/day) for 10 days. Thereafter, the effect of intracerebroventricular (ICV) administration of CBD (32 and 160 nmol) during the (10 days) abstinence period on spatial memory was evaluated using the Y-Maze test, while recognition memory was examined using the novel object recognition (NOR) test.

The results revealed a significant increase in the motor activity of METH-treated animals compared with the control group and, after the 10-day abstinence period, motor activity returned to baseline. Notably, the chronic administration of METH had impairing effects on spontaneous alternation performance and recognition memory, which was clearly observed in the NOR test.

Additionally, although the ICV administration of CBD (160 nmol) could reverse long-term memory, a lower dose (32 nmol) did not result in any significant increase in exploring the novel object during short-term memory testing.

These novel findings suggest that the chronic administration of METH induces memory impairment and presents interesting implications for the potential use of CBD in treating impairment deficits after chronic exposure to psychostimulant drugs such as METH.”

https://www.ncbi.nlm.nih.gov/pubmed/32032100

https://journals.lww.com/behaviouralpharm/Abstract/publishahead/Neuroprotective_effect_of_chronic_administration.99194.aspx

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous