Antioxidants Help Favorably Regulate the Kinetics of Lipid Peroxidation, Polyunsaturated Fatty Acids Degradation and Acidic Cannabinoids Decarboxylation in Hempseed Oil

 Scientific Reports“The seed of the hemp plant (Cannabis sativa L.) has been revered as a nutritional resource in Old World Cultures. This has been confirmed by contemporary science wherein hempseed oil (HSO) was found to exhibit a desirable ratio of omega-6 and omega-3 polyunsaturated fatty acids (PUFAs) considered optimal for human nutrition. HSO also contains gamma-linoleic acid (GLA) and non-psychoactive cannabinoids, which further contribute to its’ potential bioactive properties. Herein, we present the kinetics of the thermal stability of these nutraceutical compounds in HSO, in the presence of various antioxidants (e.g. butylated hydroxytoluene, alpha-tocopherol, and ascorbyl palmitate). We focussed on oxidative changes in fatty acid profile and acidic cannabinoid stability when HSO was heated at different temperatures (25 °C to 85 °C) for upto 24 h. The fatty acid composition was evaluated using both GC/MS and 1H-NMR, and the cannabinoids profile of HSO was obtained using both HPLC-UV and HPLC/MS methods. The predicted half-life (DT50) for omega-6 and omega-3 PUFAs in HSO at 25 °C was about 3 and 5 days, respectively; while that at 85 °C was about 7 and 5 hours respectively, with respective activation energies (Ea) being 54.78 ± 2.36 and 45.02 ± 2.87 kJ/mol. Analysis of the conjugated diene hydroperoxides (CDH) and p-Anisidine value (p-AV) revealed that the addition of antioxidants significantly (p < 0.05) limited lipid peroxidation of HSO in samples incubated at 25-85 °C for 24 h. Antioxidants reduced the degradation constant (k) of PUFAs in HSO by upto 79%. This corresponded to a significant (p < 0.05) increase in color stability and pigment retention (chlorophyll a, chlorophyll b and carotenoids) of heated HSO. Regarding the decarboxylation kinetics of cannabidiolic acid (CBDA) in HSO, at both 70 °C and 85 °C, CBDA decarboxylation led to predominantly cannabidiol (CBD) production. The half-life of CBDA decarboxylation (originally 4 days) could be increased to about 17 days using tocopherol as an antioxidant. We propose that determining acidic cannabinoids decarboxylation kinetics is a useful marker to measure the shelf-life of HSO. The results from the study will be useful for researchers looking into the thermal treatment of hempseed oil as a functional food product, and those interested in the decarboxylation kinetics of the acidic cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/32601363/

https://www.nature.com/articles/s41598-020-67267-0

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Characterization of bioactive compounds in defatted hempseed (Cannabis sativa L.) by UHPLC-HRMS/MS and anti-inflammatory activity in primary human monocytes.

 “Hempseed (Cannabis sativa L.) has beneficial impact on human health mainly because of its wide variability of bioactive compounds. However, many of them are not fully characterized yet. In this work, hempseed was defatted and through a bio-guided studied, two fractions (F03 and F05) with the highest content of phenols, flavonoids and antioxidant capacity were selected. Fractions were chemically analyzed by UHPLC HRMS/MS. The anti-inflammatory capacities of these compounds were evaluated on human monocytes using flow cytometry, RT-qPCR and Elisa procedures. A high amount of phenolic compounds were identified, with the major compound being: N-trans-caffeoyltyramine (6.36 mg g-1 in F05 and 1.28 mg g-1 in F03). Both, F03 and F05 significantly reduced the inflammatory competence of LPS-treated human primary monocytes, decreasing TNF-α and IL-6 gene expression and secretion. These findings indicate that in the defatted fraction of the hempseed there are a wide number of compounds with beneficial potential to prevent and treat inflammatory disorders, as well as other processes caused by oxidative stress.”

https://www.ncbi.nlm.nih.gov/pubmed/32329481

https://pubs.rsc.org/en/content/articlelanding/2020/FO/D0FO00066C#!divAbstract

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Hempseed Lignanamides Rich-Fraction: Chemical Investigation and Cytotoxicity towards U-87 Glioblastoma Cells.

molecules-logo “The weak but noteworthy presence of (poly)phenols in hemp seeds has been long overshadowed by the essential polyunsaturated fatty acids and digestible proteins, considered responsible for their high nutritional benefits. Instead, lignanamides and their biosynthetic precursors, phenylamides, seem to display interesting and diverse biological activities only partially clarified in the last decades. Herein, negative mode HR-MS/MS techniques were applied to the chemical investigation of a (poly)phenol-rich fraction, obtained from hemp seeds after extraction/fractionation steps. This extract contained phenylpropanoid amides and their random oxidative coupling derivatives, lignanamides, which were the most abundant compounds and showed a high chemical diversity, deeply unraveled through high resolution tandem mass spectrometry (HR-MS/MS) tools.

The effect of different doses of the lignanamides-rich extract (LnHS) on U-87 glioblastoma cell line and non-tumorigenic human fibroblasts was evaluated. Thus, cell proliferation, genomic DNA damage, colony forming and wound repair capabilities were assessed, as well as LnHS outcome on the expression levels of pro-inflammatory cytokines. LnHS significantly inhibited U-87 cancer cell proliferation, but not that of fibroblasts, and was able to reduce U-87 cell migration, inducing further DNA damage. No modification in cytokines’ expression level was found. Data acquired suggested that LnHS acted in U-87 cells by inducing the apoptosis machinery and suppressing the autophagic cell death.”

https://www.ncbi.nlm.nih.gov/pubmed/32110947

https://www.mdpi.com/1420-3049/25/5/1049

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The effect of high maternal linoleic acid on endocannabinoid signalling in rodent hearts.

Image result for journal of developmental origins of health and disease “The endocannabinoid system (ECS), modulated by metabolites of linoleic acid (LA), is important in regulating cardiovascular function.

In pregnancy, LA is vital for foetal development.

Data indicate that a high LA diet alters cell viability and CB2 expression, potentially influencing cardiac function during pregnancy and development of the offspring’s heart.”

https://www.ncbi.nlm.nih.gov/pubmed/31814560

https://www.cambridge.org/core/journals/journal-of-developmental-origins-of-health-and-disease/article/effect-of-high-maternal-linoleic-acid-on-endocannabinoid-signalling-in-rodent-hearts/C92E2C1126249B7CF9D8A929F0E52FA2

“A number of previous studies have shown that polyunsaturated fatty acids (PUFAs) and phytosterols are critically important for human health. Hempseed is a rich source of plant oil, which contains more than 80% PUFAs. The fatty acids in hempseed oil include a variety of essential fatty acids, including linoleic acid ”

https://link.springer.com/article/10.1007%2Fs10059-011-0042-6

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Hemp (Marijuana) reverted Copper-induced toxic effects on the essential fatty acid profile of Labeo rohita and Cirrhinus mrigala

“Heavy metals pollution affects the nutritive value of fish.

This study examined if the inclusion of dietary hempseed (HS) and hempseed oil (HO) in the diet of the fish could revert the copper-induced toxic effects on muscle fatty acid profile of rohu (Labeo rohita) and mrigal (Cirrhinus mrigala).

Copper exposure showed a significant effect on the fatty acid composition of both species; increased their saturated (SFA) to unsaturated (USFA) and altered their omega-3/omega-6 (ω-3/ω-6) ratios. However, feeding graded levels of hempseed products reverted the toxic effects of copper on the fatty acid profile of both the species, significantly increased muscle total fatty acid contents, improved ω-3/ω-6 ratios, and decreased SFA / USFA ratio in % inclusion dependent manner.

Furthermore, hempseed product showed a species-specific effect on USFA. The ω-3/ω-6 ratios decreased in the muscle of C. mrigala whereas an increasing trend with an increase in hempseed product % inclusion was observed in L. rohita. Moreover, HS showed a higher impact on both species as compared to HO.

With the findings of this study, hempseed product could be recommended as a feed ingredient for enhancing the essential fatty acid contents of fish which in turn can have a good impact on consumer health.”

https://link.springer.com/article/10.1007%2Fs11033-018-4483-2

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Hemp (Cannabis sativa L.) Seed Phenylpropionamides Composition and Effects on Memory Dysfunction and Biomarkers of Neuroinflammation Induced by Lipopolysaccharide in Mice.

ACS Omega

“Hempseed has achieved a growing popularity in human nutrition, particularly regarding essential amino acids and fatty acids. The multiple positive attributes of hempseed have led to the further study of its constituents.

In this study, hempseed extract containing phenylpropionamides (TPA) was obtained and its chemical profile and content were obtained using high-performance liquid chromatography technology based on previous study.

The anti-neuroinflammatory effect of TPA extract was evaluated using a lipopolysaccharide (LPS)-induced mouse model. Fourteen phenylpropionamides (TPA) were identified in the obtained extract with a total content of 233.52 ± 2.50 μg/mg extract.

In mice, TPA prevented the learning and spatial memory damage induced by LPS. Increased brain levels of IL-1β, IL-6, and TNF-α in the LPS-induced mice were reduced by TPA treatment. Furthermore, TPA attenuated LPS-induced hippocampal neuronal damage in mice.

This study demonstrates the nutraceutical potential of hempseed from a neuroprotective perspective.”

https://www.ncbi.nlm.nih.gov/pubmed/30556022

https://pubs.acs.org/doi/10.1021/acsomega.8b02250

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cholesterol-induced stimulation of platelet aggregation is prevented by a hempseed-enriched diet.

Canadian Journal of Physiology and Pharmacology

“Hypercholesterolemia indirectly increases the risk for myocardial infarction by enhancing the ability of platelets to aggregate.

Diets enriched with polyunsaturated fatty acids (PUFAs) have been shown to reduce the detrimental effects of cholesterol on platelet aggregation.

This study investigated whether dietary hempseed, a rich source of PUFAs, inhibits platelet aggregation under normal and hypercholesterolemic conditions.

The results of this study demonstrate that when hempseed is added to a cholesterol-enriched diet, cholesterol-induced platelet aggregation returns to control levels.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Extract of Fructus Cannabis Ameliorates Learning and Memory Impairment Induced by D-Galactose in an Aging Rats Model.

Image result for hindawi journal

“Hempseed (Cannabis sativa L.) has been used as a health food and folk medicine in China for centuries.

In the present study, we sought to define the underlying mechanism by which the extract of Fructus Cannabis (EFC) protects against memory impairment induced by D-galactose in rats.

To accelerate aging and induce memory impairment in rats, D-galactose (400 mg/kg) was injected intraperitoneally once daily for 14 weeks. EFC (200 and 400 mg/kg) was simultaneously administered intragastrically once daily in an attempt to slow the aging process.

We found that EFC significantly increased the activity of superoxide dismutase, while lowering levels of malondialdehyde in the hippocampus. Moreover, EFC dramatically elevated the organ indices of some organs, including the heart, the liver, the thymus, and the spleen. In addition, EFC improved the behavioral performance of rats treated with D-galactose in the Morris water maze. Furthermore, EFC inhibited the activation of astrocytes and remarkably attenuated phosphorylated tau and suppressed the expression of presenilin 1 in the brain of D-galactose-treated rats.

These findings suggested that EFC exhibits beneficial effects on the cognition of aging rats probably by enhancing antioxidant capacity and anti-neuroinflammation, improving immune function, and modulating tau phosphorylation and presenilin expression.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Bioactivities of alternative protein sources and their potential health benefits.

“Increasing the utilisation of plant proteins is needed to support the production of protein-rich foods that could replace animal proteins in the human diet so as to reduce the strain that intensive animal husbandry poses to the environment. Lupins, quinoa and hempseed are significant sources of energy, high quality proteins, fibre, vitamins and minerals. In addition, they contain compounds such as polyphenols and bioactive peptides that can increase the nutritional value of these plants. From the nutritional standpoint, the right combination of plant proteins can supply sufficient amounts of essential amino acids for human requirements. This review aims at providing an overview of the current knowledge of the nutritional properties, beneficial and non-nutritive compounds, storage proteins, and potential health benefits of lupins, quinoa and hempseed.”

https://www.ncbi.nlm.nih.gov/pubmed/28804797

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Hempseed Peptides Exert Hypocholesterolemic Effects with a Statin-Like Mechanism.

Journal of Agricultural and Food Chemistry

“This study had the objective of preparing a hempseed protein hydrolysate and investigating its hypocholesterolemic properties. The hydrolysate was prepared treating a total protein extract with pepsin. Nano HPLC-ESI-MS/MS analysis permitted identifying in total 90 peptides belonging to 33 proteins. In the range 0.1-1.0 mg/mL, it inhibited the catalytic activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoAR) in a dose-dependent manner. HepG2 cells were treated with 0.25, 0.5, and 1.0 mg/mL of the hydrolysate. Immunoblotting detection showed increments in the protein levels of regulatory element binding proteins 2 (SREBP2), low-density lipoprotein receptor (LDLR), and HMGCoAR. However, the parallel activation of the phospho-5′-adenosine monophosphate-activated protein kinase (AMPK) pathway, produced an inactivation of HMGCoAR by phosphorylation. The functional ability of HepG2 cells to uptake extracellular LDL was raised by 50.5 ± 2.7%, 221.5 ± 1.6%, and 109 ± 3.5%, respectively, versus the control at 0.25, 0.5, and 1.0 mg/mL concentrations. Finally, also a raise of the protein level of proprotein convertase subtilisin/kexintype 9 was observed. All of these data suggest that the mechanism of action has some similarity with that of statins.”

https://www.ncbi.nlm.nih.gov/pubmed/28931275

http://pubs.acs.org/doi/abs/10.1021/acs.jafc.7b02742

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous