Cannabidiol improves metabolic dysfunction in middle-aged diabetic rats submitted to a chronic cerebral hypoperfusion.

Chemico-Biological Interactions“Cannabidiol (CBD), a compound obtained from Cannabis sativa, has wide range of therapeutic properties, including mitigation of diabetes and neurodegeneration.

Cerebral ischemia and consequent learning disabilities are aggravated in elderly diabetic subjects. However, there are no studies showing the effect of CBD treatment in elderly diabetes patients suffering cerebral ischemia.

The present work tested the hypothesis that CBD treatment improves metabolic dysfunctions in middle-aged diabetic rats submitted to chronic cerebral hypoperfusion.

CBD may be used as therapeutic tool to protect metabolism against injuries from diabetes aggravated by cerebral ischemia.”

https://www.ncbi.nlm.nih.gov/pubmed/31499052

“CBD reduced hyperglycemia of middle-aged diabetic rats with CCH. CBD increased insulin secretion and decreased AGEs levels. CBD reduced fructosamine, LDL, HDL, triglycerides and total cholesterol levels. CBD presented hepatoprotective effect. CBD could mitigate neurodegeneration caused by DM associated to cerebral ischemia.”

https://www.sciencedirect.com/science/article/abs/pii/S000927971930701X?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

AM-1241 CB2 Receptor Agonist Attenuates Inflammation, Apoptosis and Stimulate Progenitor Cells in Bile Duct Ligated Rats.

 “The cannabinoid receptor 2 (CB2) plays a pleiotropic role in the innate immunity and is considered a crucial mediator of liver disease.

Cannabinoid CB2 receptor activation has been reported to attenuate liver fibrosis in CCl4 exposed mice and also plays a potential role in liver regeneration in a mouse model of I/R and protection against alcohol-induced liver injury.

AIM:

In this study, we investigated the impact of CB2 receptors on the antifibrotic and regenerative process associated with cholestatic liver injury.

RESULTS:

Following bile duct ligation (BDL) for 3 weeks, there was increased aminotransferase levels, marked inflammatory infiltration and hepatocyte apoptosis with induced oxidative stress, as reflected by increased lipid peroxidation. Conversely, following treatment with the CB2 agonist, AM-1241, BDL rats displayed a reduction in liver injury and attenuation of fibrosis as reflected by expression of hydroxyproline and α-smooth muscle actin. AM1241 treatment also significantly attenuated lipid peroxidation end-products, p53-dependent apoptosis and also attenuated inflammatory process by stimulating IL-10 production. Moreover, AM1241 treated rats were associated with significant expression of hepatic progenitor/oval cell markers.

CONCLUSION:

In conclusion, this study points out that CB2 receptors reduce liver injury and promote liver regeneration via distinct mechanisms including IL-10 dependent inhibition of inflammation, reduction of p53-reliant apoptosis and through stimulation of oval/progenitor cells. These results suggest that CB2 agonists display potent hepatoregenrative properties, in addition to their antifibrogenic effects.”

https://www.ncbi.nlm.nih.gov/pubmed/30976335

https://www.id-press.eu/mjms/article/view/oamjms.2019.194

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Protective effects of specific cannabinoid receptor 2 agonist GW405833 on concanavalin A-induced acute liver injury in mice.

Image result for nature communications

“Cannabinoid receptor 2 (CB2R) is highly expressed in immune cells and plays an important role in regulating immune responses. In the current study, we investigated the effects of GW405833 (GW), a specific CB2R agonist, on acute liver injury induced by concanavalin A (Con A).

In animal experiments, acute liver injury was induced in mice by injection of Con A (20 mg/kg, i.v.). The mice were treated with GW (20 mg/kg, i.p., 30 min after Con A injection) or GW plus the selective CB2R antagonist AM630 (2 mg/kg, i.p., 15 min after Con A injection).

We found that Con A caused severe acute liver injury evidenced by significantly increased serum aminotransferase levels, massive hepatocyte apoptosis, and necrosis, as well as lymphocyte infiltration in liver tissues. Treatment with GW significantly ameliorated Con A-induced pathological injury in liver tissue, decreased serum aminotransferase levels, and decreased hepatocyte apoptosis.

Our results suggest that GW protects against Con A-induced acute liver injury in mice by inhibiting Jurkat T-cell proliferation through the CB2Rs.”

https://www.ncbi.nlm.nih.gov/pubmed/30918343

https://www.nature.com/articles/s41401-019-0213-0

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

A systematic review on the neuroprotective perspectives of beta-caryophyllene.

Image result for phytother res

“Beta (β)-caryophyllene (BCAR) is a major sesquiterpene of various plant essential oils reported for several important pharmacological activities, including antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, antimicrobial, and immune-modulatory activity. Recent studies suggest that it also possesses neuroprotective effect.

This study reviews published reports pertaining to the neuropharmacological activities of BCAR. Databases such as PubMed, Scopus, MedLine Plus, and Google Scholar with keywords “beta (β)-caryophyllene” and other neurological keywords were searched. Data were extracted by referring to articles with information about the dose or concentration/route of administration, test system, results and discussion, and proposed mechanism of action.

A total of 545 research articles were recorded, and 41 experimental studies were included in this review, after application of exclusion criterion. Search results suggest that BCAR exhibits a protective role in a number of nervous system-related disorders including pain, anxiety, spasm, convulsion, depression, alcoholism, and Alzheimer’s disease.

Additionally, BCAR has local anesthetic-like activity, which could protect the nervous system from oxidative stress and inflammation and can act as an immunomodulatory agent. Most neurological activities of this natural product have been linked with the cannabinoid receptors (CBRs), especially the CB2R. This review suggests a possible application of BCAR as a neuroprotective agent.”

https://www.ncbi.nlm.nih.gov/pubmed/30281175

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.” http://www.ncbi.nlm.nih.gov/pubmed/23138934

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis in liver disorders: a friend or a foe?

 Image result for wolters kluwer

“The recent legalization of recreational marijuana use in some parts of the world, the discovery of new indications for the clinical application of cannabis, and the acceptance of the use of cannabis in practice has been paralleled by extensive research on the active components of cannabis and the endocannabinoid system within the human body.

In this review, we evaluate the available evidence on cannabis and its constituents and the application of this evidence in clinical practice, focusing particularly on the liver and liver diseases.

Constituents of cannabis, such as cannabidiol and Δ-tetrahydrocannabinol, have shown anti-inflammatory, antioxidant, and hepatoprotective effects both in in vitro and clinical studies, and appear to have potential in the symptom management and treatment of various liver diseases that were previously considered difficult to manage conservatively.

In addition, the manipulation of the inherent endocannabinoid response system has found favor in many clinical fields and has generated considerable research and clinical interest. Moreover, evidence with regard to the adverse effects of marijuana use in liver diseases is weak, which has led to raise a question on the prior rules, with regard to a denial of liver transplantation to marijuana users.

All in all, the recent trends in research, clinical experiences, as well as the legislature, has opened up new avenues towards the widespread clinical application of cannabis and its derivatives as well as modifiers of the components of the endocannabinoid system. More research is required to fully exploit these new evidences.”

https://www.ncbi.nlm.nih.gov/pubmed/30169449

https://insights.ovid.com/crossref?an=00042737-900000000-97980

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Role of Cannabinoids in the Setting of Cirrhosis.

medicines-logo

“Although the mortality rates of cirrhosis are underestimated, its socioeconomic burden has demonstrated a significant global impact. Cirrhosis is defined by the disruption of normal liver architecture after years of chronic insult by different etiologies. Treatment modalities are recommended primarily in decompensated cirrhosis and specifically tailored to the different manifestations of hepatic decompensation. Antifibrogenic therapies are within an active area of investigation.

The endocannabinoid system has been shown to play a role in liver disease, and cirrhosis specifically, with intriguing possible therapeutic benefits. The endocannabinoid system comprises cannabinoid receptors 1 (CB1) and cannabinoid receptor 2 (CB2) and their ligands, endocannabinoids and exocannabinoids.

CB1 activation enhances fibrogenesis, whereas CB2 activation counteracts progression to fibrosis. Conversely, deletion of CB1 is associated with an improvement of hepatic fibrosis and steatosis, and deletion of CB2 results in increased collagen deposition, steatosis, and enhanced inflammation.

CB1 antagonism has also demonstrated vascular effects in patients with cirrhosis, causing an increase in arterial pressure and vascular resistance as well as a decrease in mesenteric blood flow and portal pressure, thereby preventing ascites. In mice with hepatic encephalopathy, CB1 blockade and activation of CB2 demonstrated improved neurologic score and cognitive function.

Endocannabinoids, themselves also have mechanistic roles in cirrhosis. Arachidonoyl ethanolamide (AEA) exhibits antifibrogenic properties by inhibition of HSC proliferation and induction of necrotic death. AEA induces mesenteric vasodilation and hypotension via CB1 induction. 2-arachidonoyl glycerol (2-AG) is a fibrogenic mediator independent of CB receptors, but in higher doses induces apoptosis of HSCs, which may actually show antifibrotic properties. 2-AG has also demonstrated growth-inhibitory and cytotoxic effects.

The exocannabinoid, THC, suppresses proliferation of hepatic myofibroblasts and stellate cells and induces apoptosis, which may reveal antifibrotic and hepatoprotective mechanisms. Thus, several components of the endocannabinoid system have therapeutic potential in cirrhosis.”

https://www.ncbi.nlm.nih.gov/pubmed/29890719

http://www.mdpi.com/2305-6320/5/2/52

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Polypharmacological Properties and Therapeutic Potential of β-Caryophyllene: a Dietary Phytocannabinoid of Pharmaceutical Promise.

“β-Caryophyllene (BCP) is natural bicyclic sesquiterpene abundantly found in essential oils from various spices, fruits and medicinal as well as ornamental plants. It is approved by United States Food and Drug Administration and European agencies as food additive, taste enhancer and flavoring agent and termed as a phytocannabinoid.

Various pharmacological activities such as cardioprotective, hepatoprotective, gastroprotective, neuroprotective, nephroprotective, antioxidant, anti-inflammatory, antimicrobial and immune-modulator have been reported in experimental studies. It has shown potent therapeutic promise in neuropathic pain, neurodegenerative and metabolic diseases.

CONCLUSION:

The present review provides a comprehensive insight of pharmacological and therapeutic potential of BCP, its molecular mechanism and signaling pathways in different pathological conditions. The review also examines the possibility of its further development as a novel candidate for various pathologies considering the polypharmacological and multifaceted therapeutic properties potential along with favorable oral bioavailability, lipophilicity and physicochemical properties.”

http://www.ncbi.nlm.nih.gov/pubmed/26965491

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

 

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Beneficial paracrine effects of cannabinoid receptor 2 on liver injury and regeneration.

Logo of hal

“Accumulating data indicate that the cannabinoid system is a crucial mediator in the pathogenesis of a variety of liver diseases.

In the present study we show that CB2 receptors reduce liver injury and accelerate liver regeneration via distinct pathways.

CB2 receptors reduce liver injury and promote liver regeneration following acute insult, via distinct paracrine mechanisms involving hepatic myofibroblasts.

These results suggest that CB2 agonists display potent hepatoprotective properties, in addition to their antifibrogenic effects.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246453/
“Association of the cannabinoid receptor 2 (CB2) Gln63Arg polymorphism with indices of liver damage in obese children: an alternative way to highlight the CB2 hepatoprotective properties.” http://www.ncbi.nlm.nih.gov/pubmed/21608006

http://www.thctotalhealthcare.com/category/liver-disease/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous