The Role of Cannabinoids in the Setting of Cirrhosis.

medicines-logo

“Although the mortality rates of cirrhosis are underestimated, its socioeconomic burden has demonstrated a significant global impact. Cirrhosis is defined by the disruption of normal liver architecture after years of chronic insult by different etiologies. Treatment modalities are recommended primarily in decompensated cirrhosis and specifically tailored to the different manifestations of hepatic decompensation. Antifibrogenic therapies are within an active area of investigation.

The endocannabinoid system has been shown to play a role in liver disease, and cirrhosis specifically, with intriguing possible therapeutic benefits. The endocannabinoid system comprises cannabinoid receptors 1 (CB1) and cannabinoid receptor 2 (CB2) and their ligands, endocannabinoids and exocannabinoids.

CB1 activation enhances fibrogenesis, whereas CB2 activation counteracts progression to fibrosis. Conversely, deletion of CB1 is associated with an improvement of hepatic fibrosis and steatosis, and deletion of CB2 results in increased collagen deposition, steatosis, and enhanced inflammation.

CB1 antagonism has also demonstrated vascular effects in patients with cirrhosis, causing an increase in arterial pressure and vascular resistance as well as a decrease in mesenteric blood flow and portal pressure, thereby preventing ascites. In mice with hepatic encephalopathy, CB1 blockade and activation of CB2 demonstrated improved neurologic score and cognitive function.

Endocannabinoids, themselves also have mechanistic roles in cirrhosis. Arachidonoyl ethanolamide (AEA) exhibits antifibrogenic properties by inhibition of HSC proliferation and induction of necrotic death. AEA induces mesenteric vasodilation and hypotension via CB1 induction. 2-arachidonoyl glycerol (2-AG) is a fibrogenic mediator independent of CB receptors, but in higher doses induces apoptosis of HSCs, which may actually show antifibrotic properties. 2-AG has also demonstrated growth-inhibitory and cytotoxic effects.

The exocannabinoid, THC, suppresses proliferation of hepatic myofibroblasts and stellate cells and induces apoptosis, which may reveal antifibrotic and hepatoprotective mechanisms. Thus, several components of the endocannabinoid system have therapeutic potential in cirrhosis.”

https://www.ncbi.nlm.nih.gov/pubmed/29890719

http://www.mdpi.com/2305-6320/5/2/52

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Polypharmacological Properties and Therapeutic Potential of β-Caryophyllene: a Dietary Phytocannabinoid of Pharmaceutical Promise.

“β-Caryophyllene (BCP) is natural bicyclic sesquiterpene abundantly found in essential oils from various spices, fruits and medicinal as well as ornamental plants. It is approved by United States Food and Drug Administration and European agencies as food additive, taste enhancer and flavoring agent and termed as a phytocannabinoid.

Various pharmacological activities such as cardioprotective, hepatoprotective, gastroprotective, neuroprotective, nephroprotective, antioxidant, anti-inflammatory, antimicrobial and immune-modulator have been reported in experimental studies. It has shown potent therapeutic promise in neuropathic pain, neurodegenerative and metabolic diseases.

CONCLUSION:

The present review provides a comprehensive insight of pharmacological and therapeutic potential of BCP, its molecular mechanism and signaling pathways in different pathological conditions. The review also examines the possibility of its further development as a novel candidate for various pathologies considering the polypharmacological and multifaceted therapeutic properties potential along with favorable oral bioavailability, lipophilicity and physicochemical properties.”

http://www.ncbi.nlm.nih.gov/pubmed/26965491

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

 

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Beneficial paracrine effects of cannabinoid receptor 2 on liver injury and regeneration.

Logo of hal

“Accumulating data indicate that the cannabinoid system is a crucial mediator in the pathogenesis of a variety of liver diseases.

In the present study we show that CB2 receptors reduce liver injury and accelerate liver regeneration via distinct pathways.

CB2 receptors reduce liver injury and promote liver regeneration following acute insult, via distinct paracrine mechanisms involving hepatic myofibroblasts.

These results suggest that CB2 agonists display potent hepatoprotective properties, in addition to their antifibrogenic effects.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246453/
“Association of the cannabinoid receptor 2 (CB2) Gln63Arg polymorphism with indices of liver damage in obese children: an alternative way to highlight the CB2 hepatoprotective properties.” http://www.ncbi.nlm.nih.gov/pubmed/21608006

http://www.thctotalhealthcare.com/category/liver-disease/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous