Cannabidiol Modulates Cytokine Storm in Acute Respiratory Distress Syndrome Induced by Simulated Viral Infection Using Synthetic RNA

View details for Cannabis and Cannabinoid Research cover image“In the absence of effective antivirals and vaccination, the pandemic of COVID-19 remains the most significant challenge to our health care system in decades. There is an urgent need for definitive therapeutic intervention.

Clinical reports indicate that the cytokine storm associated with acute respiratory distress syndrome (ARDS) is the leading cause of mortality in severe cases of some respiratory viral infections, including COVID-19.

In recent years, cannabinoids have been investigated extensively due to their potential effects on the human body. Among all cannabinoids, cannabidiol (CBD) has demonstrated potent anti-inflammatory effects in a variety of pathological conditions. Therefore, it is logical to explore whether CBD can reduce the cytokine storm and treat ARDS.

Materials and Methods: In this study, we show that intranasal application of Poly(I:C), a synthetic analogue of viral double-stranded RNA, simulated symptoms of severe viral infections inducing signs of ARDS and cytokine storm.

Discussion: The administration of CBD downregulated the level of proinflammatory cytokines and ameliorated the clinical symptoms of Poly I:C-induced ARDS.

Conclusion: Our results suggest a potential protective role for CBD during ARDS that may extend CBD as part of the treatment of COVID-19 by reducing the cytokine storm, protecting pulmonary tissues, and re-establishing inflammatory homeostasis.”

https://pubmed.ncbi.nlm.nih.gov/32923657/

https://www.liebertpub.com/doi/10.1089/can.2020.0043

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Endocannabinoid-Epigenetic Cross-Talk: A Bridge toward Stress Coping

ijms-logo“There is no argument with regard to the physical and psychological stress-related nature of neuropsychiatric disorders. Yet, the mechanisms that facilitate disease onset starting from molecular stress responses are elusive.

Environmental stress challenges individuals’ equilibrium, enhancing homeostatic request in the attempt to steer down arousal-instrumental molecular pathways that underlie hypervigilance and anxiety.

A relevant homeostatic pathway is the endocannabinoid system (ECS).

In this review, we summarize recent discoveries unambiguously listing ECS as a stress coping mechanism.

As stress evokes huge excitatory responses in emotional-relevant limbic areas, the ECS limits glutamate release via 2-arachydonilglycerol (2-AG) stress-induced synthesis and retrograde cannabinoid 1 (CB1)-receptor activation at the synapse. However, ECS shows intrinsic vulnerability as 2-AG overstimulation by chronic stress rapidly leads to CB1-receptor desensitization.

In this review, we emphasize the protective role of 2-AG in stress-response termination and stress resiliency. Interestingly, we discuss ECS regulation with a further nuclear homeostatic system whose nature is exquisitely epigenetic, orchestrated by Lysine Specific Demethylase 1.

We here emphasize a remarkable example of stress-coping network where transcriptional homeostasis subserves synaptic and behavioral adaptation, aiming at reducing psychiatric effects of traumatic experiences.”

https://pubmed.ncbi.nlm.nih.gov/32872402/

https://www.mdpi.com/1422-0067/21/17/6252

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Protective Effects of Δ9‐Tetrahydrocannabinol Against Enterotoxin‐induced Acute Respiratory Distress Syndrome is Mediated by Modulation of Microbiota

British Journal of Pharmacology“Staphylococcal enterotoxin‐B (SEB) is one of the most potent bacterial superantigens that exerts profound toxic effects by inducing cytokine storm. When SEB is inhaled, it can cause Acute Respiratory Distress Syndrome (ARDS), which is often fatal and currently there are no effective treatment modalities.

Experimental Approach

We used mouse model of SEB‐mediated ARDS to test the efficacy of Δ9‐tetrahydrocannabinol (THC). These mice were monitored for lung inflammation, alterations in gut and lung microbiota and production of short‐chain fatty acids (SCFA). Gene dysregulation of lung epithelial cells was studied by transcriptome arrays. Fecal microbiota transplantation (FMT) was performed to confirm the role of microbiota in suppressing ARDS.

Key results

While SEB triggered ARDS and 100% mortality in mice, THC protected the mice from fatality effects. Pyrosequencing analysis revealed that THC caused significant and similar alterations in microbiota in the lungs and gut of mice exposed to SEB. THC significantly increased the abundance of beneficial bacterial species, Ruminococcus gnavus, but decreased pathogenic microbiota, Akkermansia muciniphila. FMT confirmed that THC‐mediated reversal of microbial dysbiosis played crucial role in attenuation of SEB‐mediated ARDS. THC treatment also led to increase in SCFA, of which propionic acid was found to inhibit the inflammatory response. Transcriptome array showed that THC up‐regulated several genes like lysozyme‐1&2, β‐defensin‐2, claudin, zonula‐1, occludin‐1, Mucin2 and Muc5b while downregulating β‐defensin‐1.

Conclusions

Current study demonstrates for the first time that THC attenuates SEB‐mediated ARDS and toxicity by altering the microbiota in the lungs and the gut as well as promoting anti‐microbial and anti‐inflammatory pathways.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436585/

https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/bph.15226

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol protects keratinocyte cell membranes following exposure to UVB and hydrogen peroxide

 Redox Biology“Keratinocytes, the major cell type of the epidermis, are particularly sensitive to environmental factors including exposure to sunlight and chemical agents. Since oxidative stress may arise as a result of these factors, compounds are actively sought that can act as protective agents.

Recently, cannabidiol (CBD), a phytocannabinoid found in Cannabis Sativa L., has gained increased interest due to its anti-inflammatory and antioxidant properties, and absence of psychoactive effects.

This prompted us to analyze the protective effects of CBD on keratinocytes exposed to UVB irradiation and hydrogen peroxide.

Together, these findings suggest that CBD could be a potential protective agent for keratinocytes against the harmful effects of irradiation and chemical environmental factors that cause oxidative stress.”

https://pubmed.ncbi.nlm.nih.gov/32863232/

“CBD could be a potential keratinocytes protector against the harmful factors.”

https://www.sciencedirect.com/science/article/pii/S2213231720308181?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Protective role of neuronal and lymphoid cannabinoid CB 2 receptors in neuropathic pain

 eLife logo“Cannabinoid CB2 receptor (CB2) agonists are potential analgesics void of psychotropic effects.

Peripheral immune cells, neurons and glia express CB2, however the involvement of CB2 from these cells in neuropathic pain remains unresolved. We explored spontaneous neuropathic pain through on-demand self-administration of the selective CB2 agonist JWH133 in wild-type and knockout mice lacking CB2 in neurons, monocytes or constitutively. Operant self-administration reflected drug-taking to alleviate spontaneous pain, nociceptive and affective manifestations. While constitutive deletion of CB2 disrupted JWH133-taking behavior, this behavior was not modified in monocyte-specific CB2 knockouts and was increased in mice defective in neuronal CB2 knockouts suggestive of increased spontaneous pain. Interestingly, CB2-positive lymphocytes infiltrated the injured nerve and possible CB2transfer from immune cells to neurons was found. Lymphocyte CB2depletion also exacerbated JWH133 self-administration and inhibited antinociception.

This work identifies a simultaneous activity of neuronal and lymphoid CB2that protects against spontaneous and evoked neuropathic pain.”

https://pubmed.ncbi.nlm.nih.gov/32687056/

https://elifesciences.org/articles/55582

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Association of State Marijuana Legalization Policies for Medical and Recreational Use With Vaping-Associated Lung Disease

Author Insights: Bariatric Surgery May Lead to Increases in ...“From June 2019 to January 2020, over 2500 cases of electronic cigarette (e-cigarette)– or vaping–associated lung injury (EVALI) were reported to the Centers for Disease Control and Prevention (CDC).

Some states have legalized marijuana and THC-containing products for recreational use. Many other states allow purchases for qualifying medical purposes. In remaining states, all forms of consumption and distribution are illegal, and individuals who use THC likely obtain it from the black market. If black-market THC products are responsible for EVALI, then case rates may be lower in recreational marijuana states.

The goal of this cross-sectional study was to measure whether states where marijuana is legal have lower rates of EVALI compared with states where it is illegal.

Recreational marijuana states had among the lowest EVALI rates of all states.

The data suggest that EVALI cases were concentrated in states where consumers do not have legal access to recreational marijuana dispensaries. This association was not driven by state-level differences in e-cigarette use, and EVALI case rates were not associated with state-level prevalence of e-cigarette use.

One possible inference from our results is that the presence of legal markets for marijuana has helped mitigate or may be protective against EVALI.”

https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2763966

“Legal Marijuana Tied to Lower Rates of Vaping Illness”  https://www.medpagetoday.com/pulmonology/smoking/85807

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol alleviates hemorrhagic shock-induced neural apoptosis in rats by inducing autophagy through activation of the PI3K/AKT pathway.

Publication cover image“Recently, several studies have reported that the pharmacological effects exerted by cannabidiol (CBD) are partially related to the regulation of autophagy. Increasing evidence indicates that autophagy provides protection against ischemia-induced brain injury. However, the protective effect of CBD against mitochondrial-dependent apoptosis in hemorrhagic shock (HS)-induced brain injury has not been studied.

In the present study, we observed the protective effects of CBD against neural mitochondrial-dependent apoptosis in a rat model of HS. In addition, CBD increased Beclin-1 and LC3II expression and reduced P62 expression, which were indicative of autophagy. CBD treatment attenuated the neural apoptosis induced by HS, as reflected by restoring mitochondrial dysfunction, downregulation of BAX, neuro-apoptosis ratio and NF-κB signaling activation, and upregulation of BCL2 in the cerebral cortex.

Such protective effects were reversed by 3-Methyladenine, a specific autophagy inhibitor, indicating that the protective effects of CBD treatment involved autophagy. LY294002, a PI3K inhibitor, significantly inhibited CBD-induced autophagy, demonstrating that PI3K/AKT signaling is involved in the CBD’s regulation of autophagy. Furthermore, we found that CBD treatment upregulated PI3K/AKT signaling via cannabinoid receptor 1.

Therefore, these findings suggested that CBD treatment protects against cerebral injury induced by HS-mediated mitochondrial-dependent apoptosis by activating the PI3K/AKT signaling pathway to reinforce autophagy.”

https://www.ncbi.nlm.nih.gov/pubmed/32215966

https://onlinelibrary.wiley.com/doi/abs/10.1111/fcp.12557

“Hemorrhagic shock occurs when the body begins to shut down due to large amounts of blood loss.” https://www.healthline.com/health/hemorrhagic-shock

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol exerts protective effects in an in vitro model of Parkinson’s disease activating AKT/mTOR pathway.

Fitoterapia“Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the degeneration of the nigrostriatal dopaminergic pathway with loss of substantia nigra pars compacta neurons and dopamine depletion. Various natural compounds showed protective actions against PD.

In this work, the protective effects of cannabidiol (CBD), obtained from Cannabis sativa, were evaluated in retinoic acid differentiated SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+), an in vitro PD model.

CBD counteracted the loss of cell viability caused by MPP+, reducing apoptosis as demonstrated by the reduction of Bax and caspase 3. Moreover, CBD reduced the nuclear levels of PARP-1. The protective effects of CBD seem to be mediated by the activation of ERK and AKT/mTOR pathways.

These data suggested the involvement of ERK in the modulation of autophagy. However, beclin 1 levels were not modified neither by MPP+ nor by CBD. These results indicated that CBD may exert preventive and protective actions in PD.”

https://www.ncbi.nlm.nih.gov/pubmed/32184097

https://www.sciencedirect.com/science/article/abs/pii/S0367326X20301350?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Critical Role of Cannabinoid Receptor 2 in URB602-induced Protective Effects Against Renal Ischemia-Reperfusion Injury in the Rat.

 Image result for shock journal“Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and even induces remote organ damage.

Accumulating proofs demonstrates that the endocannabinoid system (ECS) may provide a promising access for treatment strategy of renal IRI associated AKI.

In the current study, using the established renal IRI model of rat, we tested the hypothesis that pretreatment of URB602, 30 min before renal IRI, alleviates kidney injury and relevant distant organ damage via limiting oxidative stress and inflammation.

Taken together, our data indicate that URB602 acts as a reactive oxygen species scavenger and anti-inflammatory media in renal IRI mainly depending on the activation of CB2.”

https://www.ncbi.nlm.nih.gov/pubmed/32004183

 

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Activation of cannabinoid receptor type 2 reduces lung ischemia reperfusion injury through PI3K/Akt pathway.

Image result for int j clin exp pathol“Cannabinoid receptor-2 activation plays a protective role against ischemic reperfusion injury (IRI) in various organs, and exerts a protective effect against paraquat-induced acute lung injury, while the role of CB2 in lung IRI remains unclear.

Hence, the present study was designed to explore the role of CB2 in lung IRI, and whether the PI3K pathway was involved.

The study suggested that activation of CB2 receptor plays a protective role against IR-induced lung injury through reducing inflammation in mice.

The PI3K/Akt pathway might be involved in the protective effect of CB2 receptors in lung IRI.”

https://www.ncbi.nlm.nih.gov/pubmed/31933805

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous