Endogenous systems involved in exercise-induced analgesia.

Image result for J Physiology Pharmacology

“Exercise-induced analgesia is a phenomenon discussed worldwide. This effect began to be investigated in the early 1970s in healthy individuals and rodents during and after an acute or chronic session of running or swimming. Thereafter, studies found this effect was also induced by resistance exercises. Over the years, many studies have demonstrated the importance of exercise-induced analgesia in relieving pain caused by different conditions, such as fibromyalgia, low back pain, neuropathy, and osteoarthritis. This review aims to provide the reader with an in-depth description of the main endogenous systems, substances, neurotransmitters, receptors and enzymes that are thought to be involved in the analgesic effect induced by exercise. Many hypotheses have been proposed to elucidate the mechanisms responsible for exercise-induced analgesia. One of the most accepted hypotheses has been the activation of several endogenous systems described as analgesics. Studies have demonstrated that during and after exercise different endogenous systems are activated, which release substances or neurotransmitters, such as opioids, nitric oxide, serotonin, catecholamines and endocannabinoids, that may modulate the pain perception.”  https://www.ncbi.nlm.nih.gov/pubmed/29769416


“Exercise activates the endocannabinoid system.”  https://www.ncbi.nlm.nih.gov/pubmed/14625449

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Review of the neurological benefits of phytocannabinoids.

Logo of sni

“Numerous physical, psychological, and emotional benefits have been attributed to marijuana since its first reported use in 2,600 BC in a Chinese pharmacopoeia. The phytocannabinoids, cannabidiol (CBD), and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied extracts from cannabis sativa subspecies hemp and marijuana. CBD and Δ9-THC interact uniquely with the endocannabinoid system (ECS). Through direct and indirect actions, intrinsic endocannabinoids and plant-based phytocannabinoids modulate and influence a variety of physiological systems influenced by the ECS.


In 1980, Cunha et al. reported anticonvulsant benefits in 7/8 subjects with medically uncontrolled epilepsy using marijuana extracts in a phase I clinical trial. Since then neurological applications have been the major focus of renewed research using medical marijuana and phytocannabinoid extracts.


Recent neurological uses include adjunctive treatment for malignant brain tumors, Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, neuropathic pain, and the childhood seizure disorders Lennox-Gastaut and Dravet syndromes. In addition, psychiatric and mood disorders, such as schizophrenia, anxiety, depression, addiction, postconcussion syndrome, and posttraumatic stress disorders are being studied using phytocannabinoids.


In this review we will provide animal and human research data on the current clinical neurological uses for CBD individually and in combination with Δ9-THC. We will emphasize the neuroprotective, antiinflammatory, and immunomodulatory benefits of phytocannabinoids and their applications in various clinical syndromes.”



Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Effects of cannabinoid type 2 receptor agonist AM1241 on morphine-induced antinociception, acute and chronic tolerance, and dependence in mice.

Cover image

“Morphine is a potent opioid analgesic used to alleviate moderate or severe pain but the development of drug tolerance and dependence limits its use in pain management.

Previous studies showed that cannabinoid type 2 (CB2) receptor ligands may modulate opioid effects. However, there is no report of the effect of CB2 receptor agonist on acute morphine tolerance and physical dependence. We therefore investigated the effect of a CB2 receptor agonist (AM1241) on morphine-induced morphine tolerance and physical dependence in mice.

Our findings suggest that coadministration of the CB2 receptor agonist and morphine could increase morphine antinociception and reduce morphine tolerance and physical dependence in mice.


Combination of a CB2 agonist and morphine may provide a new strategy for better treatment of acute and chronic pain, and prevention of opioid tolerance and dependence. This may also provide a clue for the treatment of opioid tolerance and dependence in clinic.”



“Antinociceptive Synergy between 9 -Tetrahydrocannabinol and Opioids after Oral Administration” http://jpet.aspetjournals.org/content/jpet/304/3/1010.full.pdf

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid-Opioid Interaction in Chronic Pain


“Cannabis inhalation with a vaporizer may enhance the analgesia of opioids.

In addition, previous research suggest that Cannabis may be useful in attenuating the development of opioid tolerance and dependence.

This is the first human study to show that inhaled cannabis safely potentiates the analgesia of opioids.



Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Antinociceptive Synergy between 9 -Tetrahydrocannabinol and Opioids after Oral Administration

Image result for the journal of pharmacology and experimental therapeutics

“Cannabinoids and opioids have been shown to possess several similar pharmacological effects, including analgesia

The analgesic effects of opioids, such as morphine and codeine, in mice are enhanced by oral administration of the cannabinoid 9 -tetrahydrocannabinol (9 -THC).

These findings suggest that the use of a low-dose combination of analgesics is a valid and effective approach for the treatment of pain and necessitates further study.

In summary, we have observed that 9 -THC enhances the antinociceptive effects of morphine and codeine in a synergistic fashion. This is the first report of a true synergistic interaction between oral 9 -THC and morphine or codeine, since previous studies have only examined one-dose combinations.

Much more work needs to be done to elucidate the mechanisms by which cannabinoids and opioids interact to produce analgesia. However, the implication that a combination of drugs may be more effective than either drug alone, and at the same time possibly reduce the occurrence of side effects, should provoke further study on analgesic drug interactions.”



Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Molecular and cellular basis of cannabinoid and opioid interactions.

 Pharmacology Biochemistry and Behavior

“Cannabinoids and opioids have been shown to possess several similar pharmacological effects, including analgesia and stimulation of brain circuitry that are believed to underlie drug addiction and reward. In recent years, these phenomena have supported the possible existence of functional links in the mechanisms of action of both types of drugs.

The present review addresses the recent advances in the study of biochemical and molecular mechanisms underlying opioid and cannabinoid interaction. Several hypothesis have been formulated to explain this cross-modulation including the release of opioid peptides by cannabinoids or endocannabinoids by opioids and interaction at the level of receptor and/or their signal transduction mechanisms.

Moreover it is important to consider that the nature of cannabinoid and opioid interaction might differ in the brain circuits mediating reward and in those mediating other pharmacological properties, such as antinociception.

Further studies are needed since a better knowledge of the opioid-cannabinoid interaction may lead to exciting therapeutic possibilities.”



Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Opioids and cannabinoids interactions: involvement in pain management.

“Among several pharmacological properties, analgesia is the most common feature shared by either opioid or cannabinoid systems.

Cannabinoids and opioids are distinct drug classes that have been historically used separately or in combination to treat different pain states.

Indeed, it is widely known that activation of either opioid or cannabinoid systems produce antinociceptive properties in different pain models.

Moreover, several biochemical, molecular and pharmacological studies support the existence of reciprocal interactions between both systems, suggesting a common underlying mechanism.

Further studies have demonstrated that the endogenous opioid system could be involved in cannabinoid antinociception and recent data have also provided evidence for a role of the endogenous cannabinoid system in opioid antinociception.

These interactions may lead to additive or even synergistic antinociceptive effects, emphasizing their clinical relevance in humans in order to enhance analgesic effects with lower doses and consequently fewer undesirable side effects.

Thus, the present review is focused on bidirectional interactions between opioids and cannabinoids and their potent repercussions on pain modulation.”



Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Synergistic interactions of endogenous opioids and cannabinoid systems.

 Brain Research

“Cannabinoids and opioids are distinct drug classes historically used in combination to treat pain. Delta(9)-THC, an active constituent in marijuana, releases endogenous dynorphin A and leucine enkephalin in the production of analgesia.

The endocannabinoid, anandamide (AEA), fails to release dynorphin A. The synthetic cannabinoid, CP55,940, releases dynorphin B. Neither AEA nor CP55,940 enhances morphine analgesia. The CB1 antagonist, SR141716A, differentially blocks Delta(9)-THC versus AEA. Tolerance to Delta(9)-THC, but not AEA, involves a decrease in the release of dynorphin A.

Our preclinical studies indicate that Delta(9)-THC and morphine can be useful in low dose combination as an analgesic. Such is not observed with AEA or CP55,940.

We hypothesize the existence of a new CB receptor differentially linked to endogenous opioid systems based upon data showing the stereoselectivity of endogenous opioid release. Such a receptor, due to the release of endogenous opioids, may have significant impact upon the clinical development of cannabinoid/opioid combinations for the treatment of a variety of types of pain in humans.”



Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Synergistic interactions between cannabinoid and opioid analgesics.

Life Sciences

“Cannabinoids and opioids both produce analgesia through a G-protein-coupled mechanism that blocks the release of pain-propagating neurotransmitters in the brain and spinal cord. However, high doses of these drugs, which may be required to treat chronic, severe pain, are accompanied by undesirable side effects.

Thus, a search for a better analgesic strategy led to the discovery that delta 9-tetrahydrocannabinol (THC), the major psychoactive constituent of marijuana, enhances the potency of opioids such as morphine in animal models.

In addition, studies have determined that the analgesic effect of THC is, at least in part, mediated through delta and kappa opioid receptors, indicating an intimate connection between cannabinoid and opioid signaling pathways in the modulation of pain perception.

A host of behavioral and molecular experiments have been performed to elucidate the role of opioid receptors in cannabinoid-induced analgesia. The aim of such studies is to develop a novel analgesic regimen using low dose combinations of cannabinoids and opioids to effectively treat acute and chronic pain, especially pain that may be resistant to opioids alone.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Interaction of the cannabinoid and opioid systems in the modulation of nociception

Publication Cover

“Cannabinoids and opioids produce antinociceptive synergy.

Cannabinoids such as Δ-9-tetrahydrocannabinol (THC) release endogenous opioids and endocannabinoids such as anandamide (AEA) also alter endogenous opioid tone.

Opioids and cannabinoids bind distinct receptors that co-localize in areas of the brain involved with the processing of pain signals. Therefore, it is logical to look at interactions of these two systems in the modulation of both acute and chronic pain.

This review summarizes the data indicating that with cannabinoid/opioid therapy one may be able to produce long-term antinociceptive effects at doses devoid of substantial side effects, while preventing the neuronal biochemical changes that accompany tolerance.

The clinical utility of modulators of the endocannabinoid system as a potential mimic for THC-like drugs in analgesia and tolerance-sparing effects of opioids is a critical future direction also addressed in the review.”


Facebook Twitter Pinterest Stumbleupon Tumblr Posterous