Use of medical cannabis to reduce pain and improve quality of life in cancer patients.

Journal of Clinical Oncology

“Early attention to pain and symptoms in those with cancer improves both quality of life and survival. Opioid medications are the mainstay treatment of cancer-related pain.

Cannabinoids are increasingly used as adjunctive treatments for cancer pain, but clinical evidence supporting their use as an “opioid sparing agent” or to improve quality of life is as yet unknown.

Our study sought to determine if the addition of cannabinoids (medical cannabis) resulted in the reduction of the average opioid dose required for pain control, and improve self-reported quality of life indices.

Patients with cancer pain benefited from the addition of cannabinoids.

The average opioid dose decreased following access to medical cannabis.

Self-reported ratings of several quality of life indicators showed statistically significant improvement.

Our study shows a signal that cannabinoids may reduce cancer patients’ reliance on opioids to control pain.

Further prospective controlled studies are needed to further elucidate the role of cannabinoids in the treatment of cancer pain.”

https://www.ncbi.nlm.nih.gov/pubmed/28148191

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

A Review of the Therapeutic Antitumor Potential of Cannabinoids.

 

:Image result for J Altern Complement Med.

“The aim of this review is to discuss cannabinoids from a preclinical and clinical oncological perspective and provide the audience with a concise, retrospective overview of the most significant findings concerning the potential use of cannabinoids in cancer treatment.

RESULTS:

Cannabis sativa is a plant rich in more than 100 types of cannabinoids. Besides exogenous plant cannabinoids, mammalian endocannabinoids and synthetic cannabinoid analogues have been identified. Cannabinoid receptors type 1 (CB1) and type 2 (CB2) have been isolated and characterized from mammalian cells. Through cannabinoid receptor and non-receptor signaling pathways, cannabinoids show specific cytotoxicity against tumor cells, while protecting healthy tissue from apoptosis. The dual antiproliferative and proapoptotic effects of cannabinoids and associated signaling pathways have been investigated on a large panel of cancer cell lines. Cannabinoids also display potent anticancer activity against tumor xenografts, including tumors that express high resistance to standard chemotherapeutics. Few studies have investigated the possible synergistic effects of cannabinoids with standard oncology therapies, and are based on the preclinically confirmed concept of “cannabinoid sensitizers.” Also, clinical trials aimed to confirm the antineoplastic activity of cannabinoids have only been evaluated on a small number of subjects, with no consensus conclusions regarding their effectiveness.

CONCLUSIONS:

A large number of cannabinoid compounds have been discovered, developed, and used to study the effects of cannabinoids on cancers in model systems. However, few clinical trials have been conducted on the use of cannabinoids in the treatment of cancers in humans. Further studies require extensive monitoring of the effects of cannabinoids alone or in combination with standard anticancer strategies. With such knowledge, cannabinoids could become a therapy of choice in contemporary oncology.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Identification of Terpenoid Chemotypes Among High (−)-trans-Δ9- Tetrahydrocannabinol-Producing Cannabis sativa L. Cultivars

Cover for Cannabis and Cannabinoid Research

Cannabis sativa L. (cannabis) is an annual diecious member of the Cannabaceae family. Since ancient times cannabis has been used by humans for its fiber, seed, as well as its psychoactive and medicinal resin. Despite a long history of use, the legal status of cannabis in modern times often depends on its intended use. Cannabis grown for its fiber or seed, commonly known as hemp, is legally cultivated in many nations. Cannabis used for its psychoactive properties, in North American commonly known as “marijuana,” has been illegal in most nations worldwide since the 1961 United Nations Single Convention on Narcotic Drugs. Recently however, laws concerning the legal status of cannabis are changing around the world. In the United States of America, many states have legalized cannabis for medical use, whereas some have even legalized cannabis for adult consumption. Uruguay recently legalized cannabis and laws in various countries within the European Union (EU) are also changing regarding cannabis. Due to its many and controversial uses, the taxonomic classification of cannabis has been the subject of both legal and scientific debate.

From a morphological perspective, three main types of cannabis have been described sativa, indica, and ruderalis. Generally sativa plants are described as taller and loosely branched, whereas indica is typically shorter, more densely branched, and conical in shape. Ruderalis is described as short (≤2 feet) at maturity and sparsely if at all branched.7Whether the genus Cannabis is monotypic and composed of just a single species (C. sativa) or polytypic and composed of multiple species is an old taxonomic debate. A more recent taxonomic classification dividing cannabis into seven putative taxa based on morphological, geographical, and genetic traits has been proposed.

Cannabinoids are a group of terpenophenolic compounds found in cannabis. Today over 100 cannabinoids from cannabis have been characterized. (−)-Trans-Δ9-tetrahydrocannabinol (THC) is considered the primary active ingredient responsible for the intoxicating and medical effects attributed to cannabis. THC has antiemetic, neuroprotectant, and anti-inflammatory properties as well as the ability to reduce certain forms of neuropathic and chronic pain. Another important cannabinoid, cannabidiol (CBD), has neuroprotective, anti-inflammatory, antipsychotic, and antiseizure properties without the intoxicating effects of THC. Other minor cannabinoids, such as cannabigerol (CBG), cannabichromene (CBC), and tetrahydrocannabivarin (THCV), also exhibit interesting pharmacological properties.

Since cannabinoids are the major active ingredients found in cannabis, it makes sense to classify cannabis from a chemotaxonomic perspective according to cannabinoid levels for both medical and legal purposes. Early studies noted that cannabis used for fiber tended to have higher levels of CBD, whereas cannabis used for drug purposes had higher levels of THC

Terpenoids represent another interesting group of biologically active compounds found in cannabis. Due to their volatile nature, the mono- and sesquiterpenoids found in cannabis contribute to the plants’ aroma and flavor. About 100 terpenoids have been identified in cannabis, many of which are found in other plants. Both cannabinoids and terpenoids are produced in the trichomes of cannabis, which are found at highest density on female flower buds.Terpenoids are usually present in cannabis flower buds in the 0.5–3.5% range and are found at significant levels in cannabis smoke and vapor. As biologically active compounds, terpenoids may play a role in the overall effects of herbal cannabis.

The popularly understood distinctions between indica and sativa may have more to do with aroma and subjective effects than plant morphology. Recent studies have shown that terpenoids are useful in distinguishing cannabis cultivars that have similar cannabinoid content. A study of cannabinoid and terpenoid profiles among medical cannabis samples analyzed by a cannabis testing laboratory in California found a continuum of terpenoid profiles among the wide variety of sample names.Another study found that cannabis samples described as indica contained more myrcene and hydroxylated terpenoids, whereas those described as sativa tended to contain more terpinolene, 3-carene, and a few specified sesquiterpenes.” http://online.liebertpub.com/doi/full/10.1089/can.2016.0040

“Due to its astonishing efficacy, nowadays cannabis is prescribed by physicians for the treatment of neurological, psychiatric, immunological, cardiovascular, gastrointestinal, and oncological conditions. The active principles inside plants have been exploited by humans for centuries, with Cannabis sativa being one of the oldest ever used for medicinal purposes. Surprisingly, contrary to whole plant extracts, medicinal products containing exclusively THC have been found to lack efficacy and lead to unbearable side effects. These results arise from the fact that these products lack other important co-factors typically found in the Phyto-complex, such as terpenoids and other cannabinoids that contribute to the synergistic effects seen with whole plant extracts.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482328/

“In silico discovery of terpenoid metabolism in Cannabis sativa. Due to their efficacy, cannabis based therapies are currently being prescribed for the treatment of many different medical conditions. Interestingly, treatments based on the use of cannabis flowers or their derivatives have been shown to be very effective, while therapies based on drugs containing THC alone lack therapeutic value and lead to increased side effects, likely resulting from the absence of other pivotal entourage compounds found in the Phyto-complex. Among these compounds are terpenoids,” https://www.ncbi.nlm.nih.gov/pubmed/28690830

 

“Terpenoids: natural products for cancer therapy.”  https://www.ncbi.nlm.nih.gov/pubmed/23092199

“Inhibition of tumor progression by naturally occurring terpenoids.”  https://www.ncbi.nlm.nih.gov/pubmed/21936626

“Terpenoids as anti-colon cancer agents – A comprehensive review on its mechanistic perspectives.” https://www.ncbi.nlm.nih.gov/pubmed/27940056

 

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Regulation of human glioblastoma cell death by combined treatment of cannabidiol, γ-radiation and small molecule inhibitors of cell signaling pathways.

Image result for oncotarget

“Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. The challenging problem in cancer treatment is to find a way to upregulate radiosensitivity of GBM while protecting neurons and neural stem/progenitor cells in the brain. The goal of the present study was upregulation of the cytotoxic effect of γ-irradiation in GBM by non-psychotropic and non-toxic cannabinoid, cannabidiol (CBD).

We emphasized three main aspects of signaling mechanisms induced by CBD treatment (alone or in combination with γ-irradiation) in human GBM that govern cell death: 1) CBD significantly upregulated the active (phosphorylated) JNK1/2 and MAPK p38 levels with the subsequent downregulation of the active phospho-ERK1/2 and phospho-AKT1 levels. MAPK p38 was one of the main drivers of CBD-induced cell death, while death levels after combined treatment of CBD and radiation were dependent on both MAPK p38 and JNK. Both MAPK p38 and JNK regulate the endogenous TRAIL expression. 2) NF-κB p65-P(Ser536) was not the main target of CBD treatment and this transcription factor was found at high levels in CBD-treated GBM cells. Additional suppression of p65-P(Ser536) levels using specific small molecule inhibitors significantly increased CBD-induced apoptosis. 3) CBD treatment substantially upregulated TNF/TNFR1 and TRAIL/TRAIL-R2 signaling by modulation of both ligand and receptor levels followed by apoptosis.

Our results demonstrate that radiation-induced death in GBM could be enhanced by CBD-mediated signaling in concert with its marginal effects for neural stem/progenitor cells and astrocytes. It will allow selecting efficient targets for sensitization of GBM and overcoming cancer therapy-induced severe adverse sequelae.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Medicinal Uses of Marijuana and Cannabinoids

Publication Cover

“In the past two decades, there has been increasing interest in the therapeutic potential of cannabis and single cannabinoids, mainly cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC). THC and cannabis products rich in THC exert their effects mainly through the activation of cannabinoid receptors (CB1 and CB2). Since 1975, 140 controlled clinical trials using different cannabinoids or whole-plant preparations for the treatment of a large number of disorders and symptoms have been conducted. Results have led to the approval of cannabis-based medicines [dronabinol, nabilone, and the cannabis extract nabiximols (Sativex®, THC:CBD = 1:1)] as well as cannabis flowers in several countries. Controlled clinical studies provide substantial evidence for the use of cannabinoid receptor agonists in cancer chemotherapy induced nausea and vomiting, appetite loss and cachexia in cancer and HIV patients, neuropathic and chronic pain, and in spasticity in multiple sclerosis. In addition, there is also some evidence suggesting a therapeutic potential of cannabis-based medicines in other indications including Tourette syndrome, spinal cord injury, Crohn’s disease, irritable bowel syndrome, and glaucoma. In several other indications, small uncontrolled and single-case studies reporting beneficial effects are available, for example in posttraumatic stress disorder, attention deficit hyperactivity disorder, and migraine. The most common side effects of THC and cannabis-based medicines rich in THC are sedation and dizziness (in more than 10% of patients), psychological effects, and dry mouth. Tolerance to these side effects nearly always develops within a short time. Withdrawal symptoms are hardly ever a problem in the therapeutic setting. In recent years there is an increasing interest in the medical use of CBD, which exerts no intoxicating side effects and is usually well-tolerated. Preliminary data suggest promising effects in the treatment of anxiety disorders, schizophrenia, dystonia, and some forms of epilepsy. This review gives an overview on clinical studies which have been published over the past 40 years.”

http://www.tandfonline.com/doi/abs/10.1080/07352689.2016.1265360?needAccess=true&journalCode=bpts20

“Review Identifies 140 Controlled Clinical Trials Related to Cannabis”  http://blog.norml.org/2017/06/04/review-identifies-140-controlled-clinical-trials-related-to-cannabis/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Analysis of Natural Product Regulation of Cannabinoid Receptors in the treatment of Human Disease.

Cover image

“The organized tightly regulated signaling relays engaged by the cannabinoid receptors (CBs) and their ligands, G proteins and other effectors, together constitute the endocannabinoid system (ECS). This system governs many biological functions including cell proliferation, regulation of ion transport and neuronal messaging. This review will firstly examine the physiology of the ECS, briefly discussing some anomalies in the relay of the ECS signaling as these are consequently linked to maladies of global concern including neurological disorders, cardiovascular disease and cancer.

While endogenous ligands are crucial for dispatching messages through the ECS, there are also commonalities in binding affinities with copious exogenous ligands, both natural and synthetic. Therefore, this review provides a comparative analysis of both types of exogenous ligands with emphasis on natural products given their putative safer efficacy and the role of Δ9-tetrahydrocannabinol (Δ9-THC) in uncovering the ECS.

Efficacy is congruent to both types of compounds but noteworthy is the effect of a combination therapy to achieve efficacy without the unideal side-effects. An example is Sativex that displayed promise in treating Huntington’s disease (HD) in preclinical models allowing for its transition to current clinical investigation. Despite the in vitro and preclinical efficacy of Δ9-THC to treat neurodegenerative ailments, its psychotropic effects limit its clinical applicability to treating feeding disorders.

We therefore propose further investigation of other compounds and their combinations such as the triterpene, α,β-amyrin that exhibited greater binding affinity to CB1 than CB2 and was more potent than Δ9-THC and the N-alkylamides that exhibited CB2 selective affinity, the latter can be explored towards peripherally exclusive ECS modulation. The synthetic CB1 antagonist, Rimonabant was pulled from market for the treatment of diabetes, however its analogue SR144528 maybe an ideal lead molecule towards this end and HU-210 and Org27569 are also promising synthetic small molecules.”

https://www.ncbi.nlm.nih.gov/pubmed/28583800

http://www.sciencedirect.com/science/article/pii/S0163725817301511

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Study shows non-hallucinogenic cannabinoids are effective anti-cancer drugs

Related image

“New research has shown that the non-hallucinogenic components of cannabis could act as effective anti-cancer agents. The anti-cancer properties of tetrahydrocannabinol (THC), the primary hallucinogenic component of cannabis, has been recognised for many years, but research into similar cannabis-derived compounds, known as cannabinoids, has been limited.

The study was carried out by a team at St George’s, University of London. It has been published in the journal Anticancer Research. The team, led by Dr Wai Liu and colleagues carried out laboratory investigations using a number of cannabinoids, either alone or in combination with each other, to measure their anti-cancer actions in relation to leukaemia.

Of six cannabinoids studied, each demonstrated anti-cancer properties as effective as those seen in THC. Importantly, they had an increased effect on cancer cells when combined with each other.

Dr Liu said: “This study is a critical step in unpicking the mysteries of cannabis as a source of medicine. The cannabinoids examined have minimal, if any, hallucinogenic side effects, and their properties as anti-cancer agents are promising.

“These agents are able to interfere with the development of cancerous cells, stopping them in their tracks and preventing them from growing. In some cases, by using specific dosage patterns, they can destroy cancer cells on their own.

“Used in combination with existing treatment, we could discover some highly effective strategies for tackling cancer. Significantly, these compounds are inexpensive to produce and making better use of their unique properties could result in much more cost effective anti-cancer drugs in future.”

The study examined two forms of cannabidiol (CBD), two forms of cannabigerol (CBG) and two forms of cannabigevarin (CBGV). These represent the most common cannabinoids found in the cannabis plant apart from THC.” https://www.sgul.ac.uk/alumni/magazine/study-shows-non-hallucinogenic-cannabinoids-are-effective-anti-cancer-drugs

“Enhancing the Activity of Cannabidiol and Other Cannabinoids In Vitro Through Modifications to Drug Combinations and Treatment Schedules”  http://ar.iiarjournals.org/content/33/10/4373.abstract

“Non-hallucinogenic cannabinoids are effective anti-cancer drugs” https://www.sciencedaily.com/releases/2013/10/131014094105.htm

“Cannabinoids used in sequence with chemotherapy are a more effective treatment for cancer. New research has confirmed that cannabinoids – the active chemicals in cannabis – are effective in killing leukaemia cells, particularly when used in combination with chemotherapy treatments.” https://www.sgul.ac.uk/news/news-archive/cannabinoids-used-in-sequence-with-chemotherapy-are-a-more-effective-treatment-for-cancer
 
“Anticancer effects of phytocannabinoids used with chemotherapy in leukaemia cells can be improved by altering the sequence of their administration.” https://www.ncbi.nlm.nih.gov/pubmed/28560402
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anticancer effects of phytocannabinoids used with chemotherapy in leukaemia cells can be improved by altering the sequence of their administration.

Journal Cover

“Phytocannabinoids possess anticancer activity when used alone, and a number have also been shown to combine favourably with each other in vitro in leukaemia cells to generate improved activity.

We have investigated the effect of pairing cannabinoids and assessed their anticancer activity in cell line models. Those most effective were then used with the common anti-leukaemia drugs cytarabine and vincristine, and the effects of this combination therapy on cell death studied in vitro.

Results show a number of cannabinoids could be paired together to generate an effect superior to that achieved if the components were used individually.

For example, in HL60 cells, the IC50 values at 48 h for cannabidiol (CBD) and tetrahydrocannabinol (THC) when used alone were 8 and 13 µM, respectively; however, if used together, it was 4 µM. Median-effect analysis confirmed the benefit of using cannabinoids in pairs, with calculated combination indices being <1 in a number of cases.

The most efficacious cannabinoid-pairs subsequently synergised further when combined with the chemotherapy agents, and were also able to sensitise leukaemia cells to their cytotoxic effects.

The sequence of administration of these drugs was important though; using cannabinoids after chemotherapy resulted in greater induction of apoptosis, whilst this was the opposite when the schedule of administration was reversed.

Our results suggest that when certain cannabinoids are paired together, the resulting product can be combined synergistically with common anti-leukaemia drugs allowing the dose of the cytotoxic agents to be dramatically reduced yet still remain efficacious. Nevertheless, the sequence of drug administration is crucial to the success of these triple combinations and should be considered when planning such treatments.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Single and combined effects of delta9 -tetrahydrocannabinol and cannabidiol in a mouse model of chemotherapy-induced neuropathic pain.

British Journal of Pharmacology

“It has been suggested that the non-psychoactive phytocannabinoid cannabidiol (CBD) can impact the pharmacological effects of delta-9-tetrahydrocannabinol (THC). We tested the hypothesis that CBD and THC would significantly mitigate mechanical sensitivity in a mouse model of paclitaxel-induced neuropathic pain, and that CBD+THC combinations would produce synergistic effects. We also tested the hypothesis that CBD would attenuate oxaliplatin- and vincristine- induced mechanical sensitivity.

KEY RESULTS:

Both CBD and THC alone attenuated mechanical allodynia in mice treated with paclitaxel. Very low ineffective doses of CBD and THC were synergistic when given in combination. CBD also attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity, while THC significantly attenuated vincristine- but not oxaliplatin-induced mechanical sensitivity. The low dose combination significantly attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity.

CONCLUSIONS AND IMPLICATIONS:

CBD may be potent and effective at preventing the development of CIPN, and its clinical utility may be enhanced by co-administration of low doses of THC. These treatment strategies would increase the therapeutic window of Cannabis-based pharmacotherapies.”

https://www.ncbi.nlm.nih.gov/pubmed/28548225

http://onlinelibrary.wiley.com/doi/10.1111/bph.13887/abstract

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Systematic review of the potential role of cannabinoids as antiproliferative agents for urological cancers.

“The palliative effects of cannabis sativa (marijuana), which include appetite stimulation, attenuation of nausea and emesis, and pain relief, are well known.

The active components of cannabis sativa (cannabinoids) and their derivatives have received growing interest due to their diverse pharmacological activities, such as cell growth inhibition and tumour regression.

The aim of this review is to look at the current evidence on the antiproliferative effects of cannabinoids in urological malignancies, including renal, prostate, bladder, and testicular cancers.

The search yielded a total of 93 studies from Medline and PubMed, of which 23 studies were included in the final analysis. To date, there are various in vitro studies elucidating the potential mechanism of action of cannabinoids for urological cancers, along with population-based studies specifically for testicular malignancies. To date, no clinical trials have been conducted for urological cancer patients.

These results demonstrate that the role of endocannabinoids for urological malignancies is an area of active research. Further research is required not only to evaluate the crosstalk between cancer signaling pathways and cannabinoids, but also large randomized clinical studies with urological patients need to be conducted before cannabinoids can be introduced as potential therapeutic options for urological neoplasms.”

https://www.ncbi.nlm.nih.gov/pubmed/28515817

http://www.cuaj.ca/index.php/journal/article/view/4371

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous