Cannabis, the Endocannabinoid System and Immunity-the Journey From the Bedside to the Bench and Back

ijms-logo“The Cannabis plant contains numerous components, including cannabinoids and other active molecules. The phyto-cannabinoid activity is mediated by the endocannabinoid system. Cannabinoids affect the nervous system and play significant roles in the regulation of the immune system.

While Cannabis is not yet registered as a drug, the potential of cannabinoid-based medicines for the treatment of various conditions has led many countries to authorize their clinical use. However, the data from basic and medical research dedicated to medical Cannabis is currently limited.

A variety of pathological conditions involve dysregulation of the immune system. For example, in cancer, immune surveillance and cancer immuno-editing result in immune tolerance. On the other hand, in autoimmune diseases increased immune activity causes tissue damage.

Immuno-modulating therapies can regulate the immune system and therefore the immune-regulatory properties of cannabinoids, suggest their use in the therapy of immune related disorders.

In this contemporary review, we discuss the roles of the endocannabinoid system in immunity and explore the emerging data about the effects of cannabinoids on the immune response in different pathologies. In addition, we discuss the complexities of using cannabinoid-based treatments in each of these conditions.”

https://pubmed.ncbi.nlm.nih.gov/32585801/

https://www.mdpi.com/1422-0067/21/12/4448

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid CP55940 Selectively Induces Apoptosis in Jurkat Cells and in Ex Vivo T-cell Acute Lymphoblastic Leukemia Through H 2 O 2 Signaling Mechanism

 Leukemia Research‘T-cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous malignant hematological disorder arising from T-cell progenitors.

This study was aimed to evaluate the cytotoxic effect of CP55940 on human peripheral blood lymphocytes (PBL) and on T-ALL cells (Jurkat).

In conclusion, CP55940 selectively induces apoptosis in Jurkat cells through a H2O2-mediated signaling pathway.

Our findings support the use of cannabinoids as a potential treatment for T-ALL cells.”

https://pubmed.ncbi.nlm.nih.gov/32540572/

https://www.sciencedirect.com/science/article/abs/pii/S0145212620300941?via%3Dihub

“CP 55,940 is a synthetic cannabinoid which mimics the effects of naturally occurring THC (one of the psychoactive compounds found in cannabis)”  https://en.wikipedia.org/wiki/CP_55,940

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Inhibitor of Differentiation 1 (Id1) in Cancer and Cancer Therapy.

International Journal of Medical Sciences“The inhibitor of DNA binding (Id) proteins are regulators of cell cycle and cell differentiation. Of all Id family proteins, Id1 is mostly linked to tumorigenesis, cellular senescence as well as cell proliferation and survival.

Overall, Id1 represent a promising target of anti-tumor therapeutics based on its potent promotion effect to cancer. Numerous drugs were found exerting their anti-tumor function through Id1-related signaling pathways, such as fucoidan, berberine, tetramethylpyrazine, crizotinib, cannabidiol and vinblastine.”

https://www.ncbi.nlm.nih.gov/pubmed/32410828

“Id1 is a promising target of anti-tumor treatment as many compounds exert anti-tumor properties by mediating Id1-related pathways.”

https://www.medsci.org/v17p0995.htm

“Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. CBD represents the first nontoxic exogenous agent that can significantly decrease Id-1 expression in metastatic breast cancer cells leading to the down-regulation of tumor aggressiveness. Moreover, reducing Id-1 expression with cannabinoids could also provide a therapeutic strategy for the treatment of additional aggressive cancers because Id-1 expression was found to be up-regulated during the progression of almost all types of solid tumors investigated.”

https://mct.aacrjournals.org/content/6/11/2921

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

PLGA Nanoparticles for the Intraperitoneal Administration of CBD in the Treatment of Ovarian Cancer: In Vitro and In Ovo Assessment.

pharmaceutics-logo“The intraperitoneal administration of chemotherapeutics has emerged as a potential route in ovarian cancer treatment. Nanoparticles as carriers for these agents could be interesting by increasing the retention of chemotherapeutics within the peritoneal cavity. Moreover, nanoparticles could be internalised by cancer cells and let the drug release near the biological target, which could increase the anticancer efficacy.

Cannabidiol (CBD), the main nonpsychotropic cannabinoid, appears as a potential anticancer drug. The aim of this work was to develop polymer nanoparticles as CBD carriers capable of being internalised by ovarian cancer cells.

The drug-loaded nanoparticles (CBD-NPs) exhibited a spherical shape, a particle size around 240 nm and a negative zeta potential (-16.6 ± 1.2 mV). The encapsulation efficiency was high, with values above 95%. A controlled CBD release for 96 h was achieved. Nanoparticle internalisation in SKOV-3 epithelial ovarian cancer cells mainly occurred between 2 and 4 h of incubation. CBD antiproliferative activity in ovarian cancer cells was preserved after encapsulation. In fact, CBD-NPs showed a lower IC50 values than CBD in solution. Both CBD in solution and CBD-NPs induced the expression of PARP, indicating the onset of apoptosis. In SKOV-3-derived tumours formed in the chick embryo model, a slightly higher-although not statistically significant-tumour growth inhibition was observed with CBD-NPs compared to CBD in solution.

To sum up, poly-lactic-co-glycolic acid (PLGA) nanoparticles could be a good strategy to deliver CBD intraperitoneally for ovarian cancer treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/32397428

https://www.mdpi.com/1999-4923/12/5/439

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Potential therapeutic treatments of cancer-induced bone pain.

Current Opinion in Supportive and Palliative Care “The treatment of cancer-induced bone pain (CIBP) has been proven ineffective and relies heavily on opioids, the target of highly visible criticism for their negative side effects.

Alternative therapeutic agents are needed and the last few years have brought promising results, detailed in this review.

RECENT FINDINGS:

Cysteine/glutamate antiporter system, xc, cannabinoids, kappa opioids, and a ceramide axis have all been shown to have potential as novel therapeutic targets without the negative effects of opioids.

SUMMARY:

Review of the most recent and promising studies involving CIBP, specifically within murine models. Cancer pain has been reported by 30-50% of all cancer patients and even more in late stages, however the standard of care is not effective to treat CIBP. The complicated and chronic nature of this type of pain response renders over the counter analgesics and opioids largely ineffective as well as difficult to use due to unwanted side effects. Preclinical studies have been standardized and replicated while novel treatments have been explored utilizing various alternative receptor pathways: cysteine/glutamate antiporter system, xc, cannabinoid type 1 receptor, kappa opioids, and a ceramide axis sphingosine-1-phosphate/sphingosine-1-phosphate receptor 1.”

https://www.ncbi.nlm.nih.gov/pubmed/32349095

 

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis and cannabinoids in cancer pain management.

 Current Opinion in Supportive and Palliative Care | Apps | 148Apps“An increasing number of patients are turning to cannabis and cannabinoids for management of their palliative and nonpalliative cancer pain and other cancer-related symptoms.

Canadians have a legal framework for access to medical cannabis, which provides a unique perspective in a setting lacking robust clinical evidence. This review seeks to delineate the role of cannabis and cannabinoids in cancer pain management and offers insight into the Canadian practice.

RECENT FINDINGS:

A cohort study using nabiximols on advanced cancer pain in patients already optimized on opioids, over 3 weeks, demonstrated improved average pain score. A large observational study of cancer patients using cannabis over 6 months demonstrated a decreased number of patients with severe pain and decreased opioid use, whereas the number of patients reporting good quality of life increased.

SUMMARY:

Good preclinical animal data and a large body of observational evidence point to the potential efficacy of cannabinoids for cancer pain management. However, there are relatively weak data pointing to clinical efficacy from clinical trial data to date. In Canada, the burgeoning cannabis industry has driven the population to embrace a medicine before clinical evidence. There remains a need for high-quality randomized controlled trials to properly assess the effectiveness and safety of medical cannabis, compared with placebo and standard treatments for cancer-related symptoms.”

https://www.ncbi.nlm.nih.gov/pubmed/32332209

https://journals.lww.com/pages/results.aspx?txtKeywords=10.1097%2fSPC.0000000000000493

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Can Hemp Help? Low-THC Cannabis and Non-THC Cannabinoids for the Treatment of Cancer.

cancers-logo“Cannabis has been used to relieve the symptoms of disease for thousands of years. However, social and political biases have limited effective interrogation of the potential benefits of cannabis and polarised public opinion.

Evidence is emerging for the therapeutic benefits of cannabis in the treatment of neurological and neurodegenerative diseases, with potential efficacy as an analgesic and antiemetic for the management of cancer-related pain and treatment-related nausea and vomiting, respectively.

An increasing number of preclinical studies have established that ∆9-THC can inhibit the growth and proliferation of cancerous cells through the modulation of cannabinoid receptors (CB1R and CB2R), but clinical confirmation remains lacking.

In parallel, the anti-cancer properties of non-THC cannabinoids, such as cannabidiol (CBD), are linked to the modulation of non-CB1R/CB2R G-protein-coupled receptors, neurotransmitter receptors, and ligand-regulated transcription factors, which together modulate oncogenic signalling and redox homeostasis.

Additional evidence has also demonstrated the anti-inflammatory properties of cannabinoids, and this may prove relevant in the context of peritumoural oedema and the tumour immune microenvironment. This review aims to document the emerging mechanisms of anti-cancer actions of non-THC cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/32340151

https://www.mdpi.com/2072-6694/12/4/1033

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Novel approaches and current challenges with targeting the endocannabinoid system.

 Publication Cover“The pathophysiological relevance of the endocannabinoid system has been widely demonstrated in a variety of diseases including cancer, neurological disorders, and metabolic issues. Therefore, targeting the receptors and the endogenous machinery involved in this system can provide a successful therapeutic outcome.

Ligands targeting the canonical cannabinoid receptors, CB1 and CB2, along with inhibitors of the endocannabinoid enzymes have been thoroughly studied in diverse disease models. In fact, phytocannabinoids such as cannabidiol or Δ9-tetrahydrocannabinol are currently on the market for the management of neuropathic pain due to spasticity in multiple sclerosis or seizures in children epilepsy amongst others.

Expert opinion: Even if orthosteric CB1 and CB2 ligands are on the forefront in cannabinoid clinical research, emerging strategies such as allosteric or biased modulation of these receptors along with controlled off-targets effects may increase the therapeutic potential of cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/32336154

“Multi-target approaches could be promising strategies for the treatment of endocannabinoid system-related disorders. The authors believe that phytocannabinoids are at the forefront of future clinical research.”

https://www.tandfonline.com/doi/abs/10.1080/17460441.2020.1752178?journalCode=iedc20

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Possible Enhancement of Photodynamic Therapy (PDT) Colorectal Cancer Treatment when Combined with Cannabidiol.

“Colorectal cancer (CRC) has a high mortality rate and is one of the most difficult diseases to manage due to tumour resistance and metastasis. The treatment of choice for CRC is reliant on the phase and time of diagnosis. Despite several conventional treatments available to treat CRC (surgical excision, chemo-, radiation- and immune-therapy), resistance is a major challenge, especially if it has metastasized. Additionally, these treatments often cause unwanted adverse side effects and so it remains imperative to investigate, alternative combination therapies.

Photodynamic Therapy (PDT) is a promising treatment modality for the primary treatment of CRC, since it is non-invasive, has few side effects and selectively damages only cancerous tissues, leaving adjacent healthy structures intact. PDT involves three fundamentals: a Photosensitizer (PS) drug localized in tumour tissues, oxygen and light. Upon PS excitation using a specific wavelength of light, an energy transfer cascade occurs, that ultimately yields cytotoxic species, which in turn induces cell death.

Cannabidiol (CBD) is a cannabinoid compound derived from the Cannabis sativa plant, which is found to exert anticancer effects on CRC through different pathways, inducing apoptosis and so inhibits tumour metastasis and secondary spread.

This review paper highlights current conventional treatment modalities for CRC and their limitations, as well as discusses the necessitation for further investigation into unconventional active nanoparticle targeting PDT treatments for enhanced primary CRC treatment. This can be administered in combination with CBD, to prevent CRC secondary spread and so enhance the synergistic efficacy of CRC treatment outcomes, with less side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/32294046

http://www.eurekaselect.com/180902/article

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Synergistic cytotoxic activity of cannabinoids from cannabis sativa against cutaneous T-cell lymphoma (CTCL) in-vitro and ex-vivo.

 Peer-reviewed Oncology & Cancer Research Journal | Oncotarget“Cannabis sativa produces hundreds of phytocannabinoids and terpenes.

Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL), characterized by patches, plaques and tumors. Sézary is a leukemic stage of CTCL presenting with erythroderma and the presence of neoplastic Sézary T-cells in peripheral blood.

This study aimed to identify active compounds from whole cannabis extracts and their synergistic mixtures, and to assess respective cytotoxic activity against CTCL cells.

This mixture induced cell cycle arrest and cell apoptosis. Significant cytotoxic activity of the corresponding mixture of pure phytocannabinoids further verified genuine interaction between S4 and S5.

We suggest that specifying formulations of synergistic active cannabis compounds and unraveling their modes of action may lead to new cannabis-based therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/32284791

“Cannabis sativa has been used by humanity for thousands of years. Various phytocannabinoids exhibit antitumor effects in a wide array of cell lines and animal models. We have shown that a certain synergistic mixture of phytocannabinoids derived from C. sativa extracts have significant cytotoxic activity against My-La and HuT-78 cell lines and against SPBL.

To conclude, active cannabis extract fractions and their synergistic combinations were cytotoxic to CTCL cell lines in in-vitro and to SPBL in ex-vivo studies. The defined S4+S5 formulation of synergistic phytocannabinoids induced cell cycle arrest and cell apoptosis, and affected multiple biological pathways, including those associated with cancer. Based on this pre-clinical study new cannabis-based products that are based on precise composition of synergistically interacting compounds may be developed.”

https://www.oncotarget.com/article/27528/text/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous