The current state and future perspectives of cannabinoids in cancer biology.

Cancer Medicine

“To date, cannabinoids have been allowed in the palliative medicine due to their analgesic and antiemetic effects, but increasing number of preclinical studies indicates their anticancer properties. Cannabinoids exhibit their action by a modulation of the signaling pathways crucial in the control of cell proliferation and survival. Many in vitro and in vivo experiments have shown that cannabinoids inhibit proliferation of cancer cells, stimulate autophagy and apoptosis, and have also a potential to inhibit angiogenesis and metastasis. In this review, we present an actual state of knowledge regarding molecular mechanisms of cannabinoids’ anticancer action, but we discuss also aspects that are still not fully understood such as the role of the endocannabinoid system in a carcinogenesis, the impact of cannabinoids on the immune system in the context of cancer development, or the cases of a stimulation of cancer cells’ proliferation by cannabinoids. The review includes also a summary of currently ongoing clinical trials evaluating the safety and efficacy of cannabinoids as anticancer agents.”

https://www.ncbi.nlm.nih.gov/pubmed/29473338

http://onlinelibrary.wiley.com/doi/10.1002/cam4.1312/abstract

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis for vismodegib-related muscle cramps in a patient with advanced basal cell carcinoma

Journal of Pain and Symptom Management Home“Vismodegib is a hedgehog inhibitor drug indicated for metastatic or locally advanced basal cell carcinoma (BCC) that is not fit for surgery or radiation therapy.

One of the most common side effects of vismodegib is muscle cramps which can cause a decrease in quality of life (QoL) and treatment discontinuation. Cannabis is known to improve spasticity (including muscle cramps) in multiple sclerosis patients.”

http://www.jpsmjournal.com/article/S0885-3924(18)30070-8/fulltext

“Medical marijuana for the treatment of vismodegib-related muscle spasm. We report a case of vismodegib-related muscle spasm that was successfully treated with medical marijuana (MM).” http://www.jaadcasereports.org/article/S2352-5126(17)30124-8/fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid-induced cell death in endometrial cancer cells: involvement of TRPV1 receptors in apoptosis.

Journal of Physiology and Biochemistry

“Among a variety of phytocannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most promising therapeutic compounds. Besides the well-known palliative effects in cancer patients, cannabinoids have been shown to inhibit in vitro growth of tumor cells.

Likewise, the major endocannabinoids (eCBs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG), induce tumor cell death.

The purpose of the present study was to characterize cannabinoid elements and evaluate the effect of cannabinoids in endometrial cancer cell viability.

These data indicate that cannabinoids modulate endometrial cancer cell death.

Selective targeting of TPRV1 by AEA, CBD, or other stable analogues may be an attractive research area for the treatment of estrogen-dependent endometrial carcinoma.

Our data further support the evaluation of CBD and CBD-rich extracts for the potential treatment of endometrial cancer, particularly, that has become non-responsive to common therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/29441458

https://link.springer.com/article/10.1007%2Fs13105-018-0611-7

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

CBD Enhances the Anticancer Effects of THC

Image result for molecular cancer therapeutics
“Δ9-Tetrahydrocannabinol (Δ9-THC) and other cannabinoids can act as direct anticancer agents in multiple types of cancer in culture and in vivo.
Cannabidiol Enhances the Inhibitory Effects of  Δ9-Tetrahydrocannabinol on Human GlioblastomaCell Proliferation and Survival.
Δ9-THC and Cannabidiol Inhibit the Growth of Multiple Glioblastoma Cell Lines.
Cannabidiol Enhances the Inhibitory Effects of Δ9-THC on Glioblastoma Cell Growth.
Combination treatments with cannabinoids may improve overall efficacy”

“Cannabidiol Enhances the Inhibitory Effects of Δ9-Tetrahydrocannabinol on Human Glioblastoma Cell Proliferation and Survival”   http://mct.aacrjournals.org/content/9/1/180.full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death.

Logo of cddis

“Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells.

Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells.

Our findings indicate that CBD treatment leads to a biphasic increase in intracellular calcium levels and to changes in mitochondrial function and morphology leading to cell death.

Single-channel recordings of the outer-mitochondrial membrane protein, the voltage-dependent anion channel 1 (VDAC1) functioning in cell energy, metabolic homeostasis and apoptosis revealed that CBD markedly decreases channel conductance.

Finally, using microscale thermophoresis, we showed a direct interaction between purified fluorescently labeled VDAC1 and CBD.

Thus, VDAC1 seems to serve as a novel mitochondrial target for CBD.

The inhibition of VDAC1 by CBD may be responsible for the immunosuppressive and anticancer effects of CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/24309936

“The non-psychoactive plant cannabinoid, cannabidiol (CBD), alone has strong anti-inflammatory and immunosuppressive effects in diverse animal models of disease such as diabetes, cancer, rheumatoid arthritis and multiple sclerosis. In addition, CBD has been reported to have anxiolytic, antiemetic and antipsychotic effects. Moreover, CBD has been shown to possess antitumor activity in human breast carcinoma and to effectively reduce primary tumor mass, as well as size and number of lung metastasis in preclinical animal models of breast cancer.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877544/

“In summary, in this study we have identified VDAC1 as a new molecular target for CBD. Our study suggests that CBD-induced cell death may occur through the inhibition of VDAC1 conductance and that this interaction may be responsible for the anticancer and immunosuppressive properties of CBD.”

https://www.nature.com/articles/cddis2013471

“Voltage-Dependent Anion Channel 1 As an Emerging Drug Target for Novel Anti-CancerTherapeutics.” https://www.ncbi.nlm.nih.gov/pubmed/28824871

“Finally, small molecules targeting VDAC1 can induce apoptosis. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target.”  https://www.ncbi.nlm.nih.gov/pubmed/25448878

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol Induces Cytotoxicity and Cell Death via Apoptotic Pathway in Cancer Cell Lines

“In view of obtaining potential anticancer compounds, we studied the inhibitory activity and the cytotoxic effects of a candidate compound in cancer cells. The cytotoxic effects of cannabidiol (CBD) in vitro were evaluated in NIH3T3 fibroblasts, B16 melanoma cells, A549 lung cancer cells, MDA-MB-231 breast cancer cells, Lenca kidney cells and SNU-C4 colon cancer cells.
The inhibitory activity of CBD was increased in all cancer cells and showed especially strong increment in breast cancer cells. The cytotoxicity of CBD increased in a dose- and time-dependent manner with growth inhibition in all cancer cell lines.
Therefore these results suggest that CBD has a possibility of anticancer agents and anticancer effects against cancer cells by modulation of apoptotic pathway in the range of 5-80 μM concentration.”
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Phytochemical Aspects and Therapeutic Perspective of Cannabinoids in Cancer Treatment

Cannabis sativa L. – dried pistillate inflorescences and trichomes on their surface. (a) dried pistillate inflorescences (50% of the size); (b) non‐cystolithic trichome; (c) cystolithic trichome; (d) capitate‐sessile trichome; (e) simple bulbous trichome; (f) capitate‐stalked trichome (400×).

“Cannabis sativa L. (Cannabaceae) is one of the first plants cultivated by man and one of the oldest plant sources of fibre, food and remedies.

Cannabinoids comprise the plant‐derived compounds and their synthetic derivatives as well as endogenously produced lipophilic mediators. Phytocannabinoids are terpenophenolic secondary metabolites predominantly produced in CannabissativaL.

The principal active constituent is delta‐9‐tetrahydrocannabinol (THC), which binds to endocannabinoid receptors to exert its pharmacological activity, including psychoactive effect. The other important molecule of current interest is non‐psychotropic cannabidiol (CBD).

Since 1970s, phytocannabinoids have been known for their palliative effects on some cancer‐associated symptoms such as nausea and vomiting reduction, appetite stimulation and pain relief. More recently, these molecules have gained special attention for their role in cancer cell proliferation and death.

A large body of evidence suggests that cannabinoids affect multiple signalling pathways involved in the development of cancer, displaying an anti‐proliferative, proapoptotic, anti‐angiogenic and anti‐metastatic activity on a wide range of cell lines and animal models of cancer.”

https://www.intechopen.com/books/natural-products-and-cancer-drug-discovery/phytochemical-aspects-and-therapeutic-perspective-of-cannabinoids-in-cancer-treatment

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Targeting the endocannabinoid system as a potential anticancer approach.

Publication Cover

“The endocannabinoid system is currently under intense investigation due to the therapeutic potential of cannabinoid-based drugs as treatment options for a broad variety of diseases including cancer.

Besides the canonical endocannabinoid system that includes the cannabinoid receptors CB1 and CB2 and the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, recent investigations suggest that other fatty acid derivatives, receptors, enzymes, and lipid transporters likewise orchestrate this system as components of the endocannabinoid system when defined as an extended signaling network.

As such, fatty acids acting at cannabinoid receptors (e.g. 2-arachidonoyl glyceryl ether [noladin ether], N-arachidonoyldopamine) as well as endocannabinoid-like substances that do not elicit cannabinoid receptor activation (e.g. N-palmitoylethanolamine, N-oleoylethanolamine) have raised interest as anticancerogenic substances.

Furthermore, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid binding protein family, additional cannabinoid-activated G protein-coupled receptors, members of the transient receptor potential family as well as peroxisome proliferator-activated receptors have been considered as targets of antitumoral cannabinoid activity. Therefore, this review focused on the antitumorigenic effects induced upon modulation of this extended endocannabinoid network.” https://www.ncbi.nlm.nih.gov/pubmed/29390896  http://www.tandfonline.com/doi/abs/10.1080/03602532.2018.1428344?journalCode=idmr20

“Anticancer mechanisms of cannabinoids”   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791144/
“Cannabinoids as Anticancer Drugs.”
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Medical Cannabis: The Oncology Nurse’s Role in Patient Education About the Effects of Marijuana on Cancer Palliation

Home

“Cannabis, also known as marijuana, is legal either medicinally or recreationally in 29 states and the District of Columbia, with a majority of the U.S. adult population now living in states where cannabis is legal for medicinal use. As an advocate for patient autonomy and informed choice, the oncology nurse has an ethical responsibility to educate patients about and support their use of cannabis for palliation.

OBJECTIVES:

This article aims to discuss the human endocannabinoid system as a basis for better understanding the palliative and curative nature of cannabis as a medicine, as well as review cannabis delivery methods and the emerging role of the oncology nurse in this realm.

FINDINGS:

The oncology nurse can play a pivotal role in supporting patients’ use of cannabis for palliation”

https://www.ncbi.nlm.nih.gov/pubmed/29350699

https://cjon.ons.org/cjon/22/1/medical-cannabis-oncology-nurse-s-role-patient-education-about-effects-marijuana-cancer

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

(±)-Sativamides A and B, Two Pairs of Racemic Nor-lignanamide Enantiomers from the Fruits of Cannabis sativa (Hemp Seed).

The Journal of Organic Chemistry

“(±)-Sativamides A (1) and B (2), two pairs of nor-lignanamide enantiomers featuring a unique benzo-angular triquinane skeleton, were isolated from the fruits of Cannabis sativa (hemp seed). Their structures were elucidated by detailed spectroscopic analysis and ECD calculations. The resolution of (+)- and (-)-sativamides A and B were achieved by chiral HPLC. Pretreatment of neuroblastoma cells with 1 and 2 significantly reduced the endoplasmic reticulum (ER) stress-induced cytotoxicity.”

https://www.ncbi.nlm.nih.gov/pubmed/29345463

http://pubs.acs.org/doi/10.1021/acs.joc.7b02765

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous