A Randomized, Double-blind, Placebo-controlled, Parallel-group, Pilot Study of Cannabidiol-rich Botanical Extract in the Symptomatic Treatment of Ulcerative Colitis.

Image result for inflammatory bowel diseases journal

“Cannabidiol (CBD) exhibits anti-inflammatory properties that could improve disease activity in inflammatory bowel disease.

This proof-of-concept study assessed efficacy, safety and tolerability of CBD-rich botanical extract in ulcerative colitis (UC) patients.

Although the primary endpoint was not reached, several signals suggest CBD-rich botanical extract may be beneficial for symptomatic treatment of UC.”


“Cannabinoid administration is associated with a number of beneficial effects in the gut including decreasing emesis, gastric acid secretion, inflammation and intestinal motility. Cannabis has been reported to produce symptom improvement in people with IBD and some patients self-medicate with cannabis.”


Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anti-Inflammatory Drugs and Herbs with Special Emphasis on Herbal Medicines for Countering Inflammatory Diseases and Disorders – A Review.

“Diseases with inflammatory etiopathology have increased in incidence in recent times. Drugs used for therapeutic management of such inflammatory diseases are relieving the ailment but at the same time also countering serious life-threatening consequences. Moreover, they are costly and rarely available at all places. In this context, research and development on medicinal herbs have opened a new era in the prophylactic and therapeutic management of inflammatory diseases.


To highlight the importance of anti-inflammatory medicine-synthetic drugs and natural herbs, their constituents, mechanism of action, benefits, side effects and future prospects. The overall aim is to provide better health services to patiens regardless of their background on equality basis.


Anti-inflammatory herbs have proven beneficial by combating inflammatory responses that lead to severe abnormality in body systems. Inflammation though a protective response to infection or injury and may result in pathological outcome when aggravated or of severe degree thus needs an early intervention for proper resolution. Medicinal plants or their constituents are considered beneficial due to the properties i.e., satisfactory potency, ease of availability, cheapness, less or no side effects, safer and efficient as compared to the synthetic counterparts. These medicinal herbs contain phytoconstituents that can prevent undesirable inflammatory processes and also posses anti-inflammatory activity. Steroids, glycosides, phenolics, flavonoids, alkaloids, polysaccharides, terpenoids, cannabinoids, fatty acids are common phytoconstituents present in these plants. Different mechanisms have been explored for the anti-inflammatory action of these active ingredients. They may synergize the anti-inflammatory pathway enzymes, factors, proteins or interfere with these in the inflammatory pathway like lipooxygenases, cyclooxygenases, tumor necrosis factors, interleukins, prostaglandin, nitric oxide, mitogen-activated protein, nuclear factor, etc. Considering all the above-mentioned factors, further research from molecular to cellular level will enable a better understanding of the mechanisms. Common anti-inflammatory herbal plants are Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, Urtica dioica, Uncaria tomentosa, Vaccinium myrtillus, Olea europaea and much more. They are believed to be without side effects unlike the chemical counterparts or synthetic anti-inflammatory agents e.g. steroids, nonsteroid anti-inflammatory drugs, and immunosuppressant used for controlling and suppressing inflammatory crisis. A proper phytochemical, pharmacological and physiological evaluation will enable their safe and effective use in inflammatory conditions. Many of these anti-inflammatory drugs and herbal preparations have been patented with some under consideration.


Natural herbs are safe, effective and better options as anti-inflammatory agents than synthetic ones. The phytoconstituents are as effective with the comparable mechanism of action as synthetic molecules. Future research should focus on molecular mechanisms of different beneficial applications of these herbal plants in various diseases. Recent patents on anti-inflammatory drugs and herbal plants have been covered which provide insight into the current status and future prospects in this field.”

https://www.ncbi.nlm.nih.gov/pubmed/29336271  http://www.eurekaselect.com/159064/article

“Cannabinoids as novel anti-inflammatory drugs”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828614/

“Cannabinoids for the treatment of inflammation.” http://www.ncbi.nlm.nih.gov/pubmed/17520866

“Cannabis-based drugs have been shown to be effective in inflammatory diseases.” https://www.ncbi.nlm.nih.gov/pubmed/29110674


Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anti-Inflammatory Activity in Colon Models Is Derived from Δ9-Tetrahydrocannabinolic Acid That Interacts with Additional Compounds in Cannabis Extracts.

“Inflammatory bowel diseases (IBDs) include Crohn’s disease, and ulcerative colitis. Cannabis sativa preparations have beneficial effects for IBD patients. However, C. sativa extracts contain hundreds of compounds. Although there is much knowledge of the activity of different cannabinoids and their receptor agonists or antagonists, the cytotoxic and anti-inflammatory activity of whole C. sativa extracts has never been characterized in detail with in vitro and ex vivo colon models.

Material and Methods: The anti-inflammatory activity of C. sativa extracts was studied on three lines of epithelial cells and on colon tissue. C. sativa flowers were extracted with ethanol, enzyme-linked immunosorbent assay was used to determine the level of interleukin-8 in colon cells and tissue biopsies, chemical analysis was performed using high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance and gene expression was determined by quantitative real-time PCR.

Results: The anti-inflammatory activity of Cannabis extracts derives from D9-tetrahydrocannabinolic acid (THCA) present in fraction 7 (F7) of the extract. However, all fractions of C. sativa at a certain combination of concentrations have a significant increased cytotoxic activity. GPR55 receptor antagonist significantly reduces the anti-inflammatory activity of F7, whereas cannabinoid type 2 receptor antagonist significantly increases HCT116 cell proliferation. Also, cannabidiol (CBD) shows dose dependent cytotoxic activity, whereas anti-inflammatory activity was found only for the low concentration of CBD, and in a bell-shaped rather than dose-dependent manner. Activity of the extract and active fraction was verified on colon tissues taken from IBD patients, and was shown to suppress cyclooxygenase-2 (COX2) and metalloproteinase-9 (MMP9) gene expression in both cell culture and colon tissue.

Conclusions: It is suggested that the anti-inflammatory activity of Cannabis extracts on colon epithelial cells derives from a fraction of the extract that contains THCA, and is mediated, at least partially, via GPR55 receptor. The cytotoxic activity of the C. sativa extract was increased by combining all fractions at a certain combination of concentrations and was partially affected by CB2 receptor antagonist that increased cell proliferation. It is suggested that in a nonpsychoactive treatment for IBD, THCA should be used rather than CBD.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Potential of plant-sourced phenols for inflammatory bowel disease.

“Inflammatory bowel disease (IBD) is an uncontrolled chronic inflammatory intestinal disorder, which requires medications for long-term therapy. Facing the challenges of severe side effects and drug resistance of conventional medications, to develop the strategies meet the stringent safety and effectiveness in the long-term treatment are urgent in the clinics.

In this regard, a growing body of evidence confirms plant-sourced phenols, such as flavonoids, catechins, stilbenes, coumarins, quinones, lignans, phenylethanoids, cannabinoid phenols, tannins, phenolic acids and hydroxyphenols, exert potent protective benefits with fewer undesirable effects in conditions of acute or chronic intestinal inflammation through improvement of colonic oxidative and pro-inflammatory status, preservation of the epithelial barrier function and modulation of gut microbiota.

In this review, the great potential of plant-sourced phenols and their action mechanisms for the treatment or prevention of IBD in recent research are summarized, which may help the further development of new preventive/adjuvant regimens for IBD.”



Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Endocannabinoid-related compounds in gastrointestinal diseases.

Journal of Cellular and Molecular Medicine

“The endocannabinoid system (ECS) is an endogenous signalling pathway involved in the control of several gastrointestinal (GI) functions at both peripheral and central levels. In recent years, it has become apparent that the ECS is pivotal in the regulation of GI motility, secretion and sensitivity, but endocannabinoids (ECs) are also involved in the regulation of intestinal inflammation and mucosal barrier permeability, suggesting their role in the pathophysiology of both functional and organic GI disorders. Genetic studies in patients with irritable bowel syndrome (IBS) or inflammatory bowel disease have indeed shown significant associations with polymorphisms or mutation in genes encoding for cannabinoid receptor or enzyme responsible for their catabolism, respectively. Furthermore, ongoing clinical trials are testing EC agonists/antagonists in the achievement of symptomatic relief from a number of GI symptoms. Despite this evidence, there is a lack of supportive RCTs and relevant data in human beings, and hence, the possible therapeutic application of these compounds is raising ethical, political and economic concerns. More recently, the identification of several EC-like compounds able to modulate ECS function without the typical central side effects of cannabino-mimetics has paved the way for emerging peripherally acting drugs. This review summarizes the possible mechanisms linking the ECS to GI disorders and describes the most recent advances in the manipulation of the ECS in the treatment of GI diseases.”



Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid Receptor-2 Ameliorates Inflammation in Murine Model of Crohn’s Disease.

Image result for jcc journal of crohn's and colitis

“Cannabinoid receptor stimulation may have positive symptomatic effects on inflammatory bowel disease [IBD] patients through analgesic and anti-inflammatory effects.

The cannabinoid 2 receptor [CB2R] is expressed primarily on immune cells, including CD4+ T cells, and is induced by active inflammation in both humans and mice. We therefore investigated the effect of targeting CB2R in a preclinical IBD model.

 In summary, the endocannabinoid system is induced in murine ileitis but is downregulated in chronic murine and human intestinal inflammation, and CB2R activation attenuates murine ileitis, establishing an anti-inflammatory role of the endocannabinoid system.”



Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol and Palmitoylethanolamide are anti-inflammatory in the acutely inflamed human colon.

Clinical Science “We sought to quantify the anti-inflammatory effects of two cannabinoid drugs: cannabidiol (CBD) and palmitoylethanolamide (PEA), in cultured cell lines and compared this effect with experimentally inflamed explant human colonic tissue.  These effects were explored in acutely and chronically inflamed colon, using inflammatory bowel disease and appendicitis explants.

Results:   IFNγ and TNFα treatment increased phosphoprotein and cytokine levels in Caco-2 cultures and colonic explants.  Phosphoprotein levels were significantly reduced by PEA or CBD in Caco-2 cultures and colonic explants.  CBD and PEA prevented increases in cytokine production in explant colon, but not in Caco-2 cells. CBD effects were blocked by the CB2antagonist AM630 and TRPV1 antagonist SB366791.  PEA effects were blocked by the PPARα antagonist GW6471.  PEA and CBD were anti-inflammatory in IBD and appendicitis explants.

Conclusion: PEA and CBD are anti-inflammatory in the human colon.  This effect is not seen in cultured epithelial cells. Appropriately sized clinical trials should assess their efficacy.”



Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis in Inflammatory Bowel Diseases: from Anecdotal Use to Medicalization?

“Inflammatory bowel diseases (IBD) are disorders of chronic intestinal inflammation of unknown etiology. The basic pathophysiological process is that of immune mediated inflammation affecting the intestinal tract. This process is dependent on and governed by both genetic and environmental factors. There are two distinct forms of IBD – ulcerative colitis and Crohn’s disease.

There is no curative medical treatment. Furthermore, over 30% of patients, and over 70% with Crohn’s disease, will need surgical intervention for their disease. Thus, it comes as no surprise that many patients will turn to complementary or alternative medicine at some stage of their disease. Recent information reveals that between 16% and 50% of patients admit to having tried marijuana for their symptoms.

There is a long list of gastrointestinal symptoms that have been reported to be relieved by cannabis. These include anorexia, nausea, abdominal pain, diarrhea, gastroparesis – all of which can be part of IBD. These effects are related to the fact that the gastrointestinal tract is rich in cannabinoid (CB) receptors and their endogenous ligands, comprising together the endocannabinoid system (ECS).

In conclusion, use of cannabis is common in IBD, and it seems to be mostly safe. Accumulating preliminary data from human studies support a beneficial role of cannabinoids in IBD.”




Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Low-Dose Cannabidiol Is Safe but Not Effective in the Treatment for Crohn’s Disease, a Randomized Controlled Trial.

Image result for Dig Dis Sci

“Cannabidiol (CBD) is an anti-inflammatory cannabinoid shown to be beneficial in a mouse model of IBD. Lacking any central effect, cannabidiol is an attractive option for treating inflammatory diseases. In this study of moderately active Crohn’s disease, CBD was safe but had no beneficial effects. This could be due to lack of effect of CBD on Crohn’s disease, but could also be due to the small dose of CBD, the small number of patients in the study, or the lack of the necessary synergism with other cannabinoids.”  https://www.ncbi.nlm.nih.gov/pubmed/28349233

“Cannabis induces a clinical response in patients with Crohn’s disease: a prospective placebo-controlled study. We performed a prospective trial to determine whether cannabis can induce remission in patients with Crohn’s disease. Complete remission was achieved by 5 of 11 subjects in the cannabis group and 1 of 10 in the placebo group. A short course (8 weeks) of THC-rich cannabis produced significant clinical, steroid-free benefits to 10 of 11 patients with active Crohn’s disease, compared with placebo, without side effects.”  https://www.ncbi.nlm.nih.gov/pubmed/23648372

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids for treating inflammatory bowel diseases: where are we and where do we go?

Image result for Expert Rev Gastroenterol Hepatol.

“Fifty years after the discovery of Δ9-tetrahydrocannabinol (THC) as the psychoactive component of Cannabis, we are assessing the possibility of translating this herb into clinical treatment of inflammatory bowel diseases (IBDs).

Here, a discussion on the problems associated with a potential treatment is given.

From first surveys and small clinical studies in patients with IBD we have learned that Cannabis is frequently used to alleviate diarrhea, abdominal pain, and loss of appetite.

Single ingredients from Cannabis, such as THC and cannabidiol, commonly described as cannabinoids, are responsible for these effects. Synthetic cannabinoid receptor agonists are also termed cannabinoids, some of which, like dronabinol and nabilone, are already available with a narcotic prescription.

Recent data on the effects of Cannabis/cannabinoids in experimental models of IBD and in clinical trials with IBD patients have been reviewed using a PubMed database search. A short background on the endocannabinoid system is also provided.

Expert commentary: Cannabinoids could be helpful for certain symptoms of IBD, but there is still a lack of clinical studies to prove efficacy, tolerability and safety of cannabinoid-based medication for IBD patients, leaving medical professionals without evidence and guidelines.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous