Δ-9 Tetrahydrocannabinol inhibits growth and metastasis of lung cancer.

Image result for harvard university logo

“Lung cancer is the major cause of cancer-related mortality worldwide.

Many of these over-express epidermal growth factor receptor (EGFR), and are usually highly aggressive and resistant to chemotherapy.

Recent studies have shown that Δ-9 Tetrahydrocannabinol (THC), the major component of Cannabis sativa, possess anti-tumor properties against various types of cancers.

However, not much is known about its effect on lung cancer. In this study, we sought to characterize the effect of THC on EGF-induced growth and metastasis of human non small lung cancer cell (NSCLC) lines A549 and SW-1573.

We demonstrate that these cell lines and primary tumor samples derived from lung cancer patients express cannabinoids receptors CB1 and CB2, the known targets for THC action.

We further show that THC inhibits EGF-induced growth in these cell lines.

In addition THC attenuated EGF-stimulated chemotaxis and chemoinvasion.

Next we characterized the effect of THC on in vivo lung cancer growth and metastasis in a murine model. A549 cells were implanted in SCID mice (n=6 per group) through subcutaneous and intravenous injections to generate subcutaneous and lung metastatic cancer, respectively. THC (5mg/kg body wt.) was administered once daily through intraperitoneal injections for 21 days. The mice were analyzed for tumor growth and lung metastasis.

A significant reduction (~50%) in tumor weight and volume were observed in THC treated animals compared to the vehicle treated animals.

THC treated animals also showed a significant (~60%) reduction in macroscopic lesions on the lung surface in comparison to vehicle treated control.

Immunohistochemical analysis of the tumor samples from THC treated animals revealed anti-proliferative and anti-angiogenic effects of THC with significant reduction in staining for Ki67, a proliferative marker and CD31, an endothelial marker indicative of vascularization. Investigation into the signaling events associated with reduced EGF-induced functional effects revealed that THC also inhibits EGF-induced Akt phosphorylation. Akt is a central signaling molecule of EGFR-mediated signaling pathways and it regulates a diverse array of cellular functions, including proliferation, angiogenesis, invasion and apoptosis.

Cumulatively, these studies indicate that THC has anti-tumorigenic and anti-metastatic effects against lung cancer. Novel therapies against EGFR overexpressing, aggressive and chemotherapy resistant lung cancers may include targeting the cannabinoids receptors.”

http://cancerres.aacrjournals.org/content/67/9_Supplement/4749.short

http://www.thctotalhealthcare.com/category/lung-cancer/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

CB2 receptor agonists protect human dopaminergic neurons against damage from HIV-1 gp120.

Logo of plosone

“The global pandemic of HIV infection currently afflicts 34 million individuals, has killed over 25 million people since 1981, and is the cause of death in an estimated 1.8 million people per year.

Despite the therapeutic impact of anti-retroviral therapy, HIV-1-associated neurocognitive disorder (HAND) remains a serious threat to AIDS patients…

Synthetic cannabinoids inhibit HIV-1 expression in human microglia, suppress production of inflammatory mediators in human astrocytes, and there is substantial literature demonstrating the neuroprotective properties of cannabinoids in other neuropathogenic processes.

Based on these data, experiments were designed to test the hypothesis that synthetic cannabinoids will protect dopaminergic neurons against the toxic effects of the HIV-1 protein gp120. Using a human mesencephalic neuronal/glial culture model…

These data suggest that synthetic cannabinoids are capable of protecting human dopaminergic neurons from gp120 in a variety of ways, acting principally through the CB2 receptors and microglia.

Overall, this study confirms that gp120 is capable of damaging human dopaminergic neurons, that this damage involves human microglia, and that synthetic cannabinoids can alleviate this damage through mechanisms involving human microglia.

Thus, the results of these experiments set the stage for further studies designed to tease out the role human microglia have in the mechanisms underlying the toxic effects of HIV-1 on human dopaminergic neurons and understanding the microglial-centered mechanisms underlying the protective effects of selected synthetic cannabinoids.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798286/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Ultralow doses of cannabinoid drugs protect the mouse brain from inflammation-induced cognitive damage.

“In our previous studies, we found that a single ultralow dose of tetrahydrocannabinol (THC)… protects the brain from different insults that cause cognitive deficits.

Because various insults may trigger a neuroinflammatory response that leads to secondary damage to the brain, the current study tested whether this extremely low dose of THC could protect the brain from inflammation-induced cognitive deficits…

Our results suggest that an ultralow dose of THC that lacks any psychotrophic activity protects the brain from neuroinflammation-induced cognitive damage and might be used as an effective drug for the treatment of neuroinflammatory conditions, including neurodegenerative diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/25042014

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Chronic administration of Δ9-tetrahydrocannabinol induces intestinal anti-inflammatory microRNA expression during acute simian immunodeficiency virus infection of rhesus macaques.

“Recreational and medical use of cannabis among human immunodeficiency virus (HIV)-infected individuals has increased in recent years. In simian immunodeficiency virus (SIV)-infected macaques, chronic administration of Δ9-tetrahydrocannabinol (Δ9-THC) inhibited viral replication and intestinal inflammation and slowed disease progression…

These results support a role for differential miRNA induction in THC-mediated suppression of intestinal inflammation. Whether similar miRNA modulation occurs in other tissues requires further investigation.

IMPORTANCE:

Gastrointestinal (GI) tract disease/inflammation is a hallmark of HIV/SIV infection.

Previously, we showed that chronic treatment of SIV-infected macaques with Δ9-tetrahydrocannabinol (Δ9-THC) increased survival and decreased viral replication and infection-induced gastrointestinal inflammation.

Here, we show that chronic THC administration to SIV-infected macaques induced an anti-inflammatory microRNA expression profile in the intestine…

Overall, our results show that selective upregulation of anti-inflammatory miRNA expression contributes to THC-mediated suppression of gastrointestinal inflammation and maintenance of intestinal homeostasis.”

http://www.ncbi.nlm.nih.gov/pubmed/25378491

http://www.thctotalhealthcare.com/category/hivaids/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Colocalization of cannabinoid receptor 1 with somatostatin and neuronal nitric oxide synthase in rat brain hippocampus.

“Somatostatin (SST), a growth hormone inhibitory peptide, is expressed in different parts of the brain and functions as a neurotransmitter and neuromodulator. In the central nervous system (CNS), SST inhibits Ca2+ influx and regulates neuronal excitability in the hippocampus, the brain region which plays a major role in seizure, as well as cognitive and memory function.

Much like SST, cannabinoid receptor 1 (CB1 receptor) is also widely distributed in the CNS, associated with memory function ad exerts inhibitory effects on seizure.

It is unknown whether overlapping functional activities of SST and CB1 receptor are also associated with coexpression in the hippocampus.

In the present study, we determined the colocalization between SST and CB1 receptor in adult rat brain hippocampus. In the CNS, the majority of SST positive interneurons coexpress neuronal nitric oxide synthase (nNOS). Accordingly, colocalization studies were also performed to determine whether nNOS positive neurons display comparable colocalization with CB1 receptor.

The findings suggested that SST and nNOS are expressed in most interneurons whereas CB1 receptor is present in both interneurons and projection neurons in hippocampal regions. The distinct neuronal populations either expressing CB1 receptor, SST and nNOS alone or colocalization were observed in a region specific manner.

Taken together, the observations described here anticipate the possibility of crosstalk between somatostatin subtypes and CB1 receptor in regulation of physiological activities in the hippocampus.”

http://www.ncbi.nlm.nih.gov/pubmed/26115586

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy.

“Under an expanded access investigational new drug (IND) trial, cannabidiol (CBD) is being studied as a possible adjuvant treatment of refractory epilepsy in children.

Of the 25 subjects in the trial, 13 were being treated with clobazam (CLB). Because CLB and CBD are both metabolized in the cytochrome P450 (CYP) pathway, we predicted a drug-drug interaction, which we evaluate in this article…

Monitoring of CLB and nCLB levels is necessary for clinical care of patients concomitantly on CLB and CBD.

Nonetheless, CBD is a safe and effective treatment of refractory epilepsy in patients receiving CLB treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/26114620

http://www.thctotalhealthcare.com/category/epilepsy-2/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Psychological and social sequelae of cannabis and other illicit drug use by young people: a systematic review of longitudinal, general population studies.

“Use of illicit drugs, particularly cannabis, by young people is widespread and is associated with several types of psychological and social harm. These relations might not be causal. Causal relations would suggest that recreational drug use is a substantial public health problem…

All these associations seemed to be explicable in terms of non-causal mechanisms.

Available evidence does not strongly support an important causal relation between cannabis use by young people and psychosocial harm…

The lack of evidence of robust causal relations prevents the attribution of public health detriments to illicit drug use.”

http://www.ncbi.nlm.nih.gov/pubmed/15145631

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Signaling Mechanism of Cannabinoid Receptor-2 Activation-Induced β-Endorphin Release.

“Activation of cannabinoid receptor-2 (CB2) results in β-endorphin release from keratinocytes, which then acts on primary afferent neurons to inhibit nociception.

Our data also suggest that stimulation of MAPK contributes to the peripheral analgesic effect of CB2 receptor agonists.”

http://www.ncbi.nlm.nih.gov/pubmed/26108183

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Biomedical benefits of cannabinoids?

“Cannabinoids appear to be of therapeutic value as antiemetics, antispasmodics, analgesics and appetite stimulants and may have potential uses in epilepsy, glaucoma and asthma.

This paper reviews the clinical trials which have been carried out with cannabinoids including Δ⁹-tetrahydrocannabinol (THC) and synthetic cannabinoids such as nabilone and levonantradol, and discusses the advantages and adverse effects of cannabinoids in clinical use.

The place of cannabinoids in modern medicine remains to be properly evaluated, but present evidence suggests that they could be valuable, particularly as adjuvants, for symptom control in a range of conditions for which standard drugs are not fully satisfactory.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Activation of cannabinoid receptors prevents antigen-induced asthma-like reaction in guinea pigs.

“In this study we evaluated the effects of the CB1/CB2 cannabinoid receptor agonist on antigen-induced asthma-like reaction in sensitized guinea pigs…

These findings suggest that targeting cannabinoid receptors could be a novel preventative therapeutic strategy in asthmatic patients.”

http://www.ncbi.nlm.nih.gov/pubmed/18266975

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous