Emerging role of cannabinoids and synthetic cannabinoid receptor 1/cannabinoid receptor 2 receptor agonists in cancer treatment and chemotherapy-associated cancer management

Journal of Cancer Research and Therapeutics“Cannabis was extensively utilized for its medicinal properties till the 19th century. A steep decline in its medicinal usage was observed later due to its emergence as an illegal recreational drug.

Advances in technology and scientific findings led to the discovery of delta-9-tetrahydrocannabinol (THC), the primary psychoactive compound of cannabis, that further led to the discovery of endogenous cannabinoids system consisting of G-protein-coupled receptors – cannabinoid receptor 1 and cannabinoid receptor 2 along with their ligands, mainly anandamide and 2-arachidonoylglycerol.  Endocannabinoid (EC) is shown to be a modulator not only for physiological functions but also for the immune system, endocrine network, and central nervous system.

Medicinal research and meta-data analysis over the last few decades have shown a significant potential for both THC and cannabidiol (CBD) to exert palliative effects. People suffering from many forms of advanced stages of cancers undergo chemotherapy-induced nausea and vomiting followed by severe and chronic neuropathic pain and weight loss.

THC and CBD exhibit effective analgesic, anxiolytic, and appetite-stimulating effect on patients suffering from cancer. Drugs currently available in the market to treat such chemotherapy-induced cancer-related ailments are Sativex (GW Pharmaceutical), Dronabinol (Unimed Pharmaceuticals), and Nabilone (Valeant Pharmaceuticals).

Apart from exerting palliative effects, THC also shows promising role in the treatment of cancer growth, neurodegenerative diseases (multiple sclerosis and Alzheimer’s disease), and alcohol addiction and hence should be exploited for potential benefits.

The current review discusses the nature and role of CB receptors, specific applications of cannabinoids, and major studies that have assessed the role of cannabinoids in cancer management.

Specific targeting of cannabinoid receptors can be used to manage severe side effects during chemotherapy, palliative care, and overall cancer management. Furthermore, research evidences on cannabinoids have suggested tumor inhibiting and suppressing properties which warrant reconsidering legality of the substance.

Studies on CB1 and CB2 receptors, in case of cancers, have demonstrated the psychoactive constituents of cannabinoids to be potent against tumor growth.

Interestingly, studies have also shown that activation of CB1 and CB2 cannabinoid receptors by their respective synthetic agonists tends to limit human cancer cell growth, suggesting the role of the endocannabinoid system as a novel target for treatment of cancers.

Further explorations are required to exploit cannabinoids for an effective cancer management.”

http://www.cancerjournal.net/preprintarticle.asp?id=263538

“Could Cannabis Kill Cancer Cells? A New Study Looks Promising”  https://www.portlandmercury.com/blogtown/2019/08/15/26977361/could-cannabis-kill-cancer-cells-a-new-study-looks-promising

“Study Reviews How Marijuana Compounds Inhibit Tumor Growth And Kill Cancer Cells” https://www.marijuanamoment.net/study-reviews-how-marijuana-compounds-inhibit-tumor-growth-and-kill-cancer-cells/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

New approaches to cancer therapy: combining Fatty Acid Amide Hydrolase (FAAH) inhibition with Peroxisome Proliferator-Activated Receptors (PPARs) activation.

 Go to Volume 0, Issue ja“Over the course of the last decade, Peroxisome Proliferator-Activated Receptors (PPARs) have been identified as part of the cannabinoid signaling system: both phytocannabinoids and endocannabinoids are capable of binding and activating these nuclear receptors. Fatty Acid Amide Hydrolase (FAAH) hydrolyzes the endocannabinoid Anandamide and other N-Acylethanolamines. These substances have been shown to have numerous anti-cancer effects, and indeed the inhibition of FAAH has multiple beneficial effects that are mediated by PPARα subtype and by PPARγ subtype, especially antiproliferation and activation of apoptosis. The substrates of FAAH are also PPAR agonists, which explains the PPAR-mediated effects of FAAH inhibitors. Much like cannabinoid ligands and FAAH inhibitors, PPARγ agonists show antiproliferative effects on cancer cells, suggesting that additive or synergistic effects may be achieved through the positive modulation of both signaling systems. In this perspective, we discuss the development of novel FAAH inhibitors able to directly act as PPAR agonists and their promising utilization as leads for the discovery of highly effective anti-cancer compounds.”

https://www.ncbi.nlm.nih.gov/pubmed/31407888

https://pubs.acs.org/doi/10.1021/acs.jmedchem.9b00885

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids and inflammation: Implications for People Living with HIV.

Image result for wolters kluwer “Thanks to the success of modern antiretroviral therapy (ART), people living with HIV (PLWH) have life expectancies which approach that of persons in the general population. However, despite the ability of ART to suppress viral replication, PLWH have high levels of chronic systemic inflammation which drives the development of comorbidities such as cardiovascular disease, diabetes and non-AIDS associated malignancies.

Historically, cannabis has played an important role in alleviating many symptoms experienced by persons with advanced HIV infection in the pre-ART era and continues to be used by many PLWH in the ART era, though for different reasons.

Δ-tetrahydrocannabinol (Δ-THC) and cannabidiol (CBD) are the phytocannabinoids which have received most attention for their medicinal properties. Due to their ability to suppress lymphocyte proliferation and inflammatory cytokine production, there is interest in examining their therapeutic potential as immunomodulators.

CB2 receptor activation has been shown in vitro to reduce CD4 T-cell infection by CXCR4-tropic HIV and to reduce HIV replication.

Studies involving SIV-infected macaques have shown that Δ-THC can reduce morbidity and mortality and has favourable effects on the gut mucosal immunity. Furthermore, ΔTHC administration was associated with reduced lymph node fibrosis and diminished levels of SIV proviral DNA in spleens of rhesus macaques compared with placebo-treated macaques.

In humans, cannabis use does not induce a reduction in peripheral CD4 T-cell count or loss of HIV virological control in cross-sectional studies. Rather, cannabis use in ART-treated PLWH was associated with decreased levels of T-cell activation, inflammatory monocytes and pro-inflammatory cytokines secretion, all of which are related to HIV disease progression and co-morbidities.

Randomized clinical trials should provide further insights into the ability of cannabis and cannabinoid-based medicines to attenuate HIV-associated inflammation. In turn, these findings may provide a novel means to reduce morbidity and mortality in PLWH as adjunctive agents to ART.”

https://www.ncbi.nlm.nih.gov/pubmed/31408029

https://insights.ovid.com/crossref?an=00002030-900000000-96855

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Acute Activation of the CB1 Receptor in the Hippocampus Decreases Neurotoxicity and Prevents Spatial Memory Impairment in Rats Lesioned with β-Amyloid 25-35.

Neuroscience“Given their anti-inflammatory properties, cannabinoids have been shown to be neuroprotective agents and to reduce excitotoxicity, through the activation of the Cannabinoid receptor type 1 (CB1r).

These properties have led to CB1r being proposed as pharmacological targets for the treatment of various neurodegenerative diseases.

This study aimed to evaluate the neuroprotective effect of an acute activation of CB1r on spatial memory and its impact on iNOS protein expression, NO● levels, gliosis and the neurodegenerative process induced by the injection of Aβ(25-35) into the CA1 subfield of the hippocampus.

The data obtained in the present research suggest that the acute early activation of CB1r is crucial for neuroprotection.”

https://www.ncbi.nlm.nih.gov/pubmed/31400487

https://www.sciencedirect.com/science/article/abs/pii/S0306452219305433?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Δ9-Tetrahydrocannabinol suppresses monocyte-mediated astrocyte production of MCP-1 and IL-6 in a TLR7-stimulated human co-culture.

Journal of Pharmacology and Experimental Therapeutics“Cannabis is widely used in the United States with an estimated prevalence of 9.5%. Certain cannabinoids in Cannabis sativa, in particular, Δ9-tetrahydrocannabinol (THC), possess immune modulating and anti-inflammatory activity. Depending on the context, the anti-inflammatory activity of cannabinoids may be beneficial, such as in treating inflammatory diseases, or detrimental to normal immune defense against pathogens. The potential beneficial impact of cannabinoids on chronic neuroinflammation has gained recent attention. Monocyte migration to the brain has been implicated as a key event in chronic neuroinflammation and in the etiology of central nervous system diseases including viral infection (e.g., HIV-associated neurocognitive disorder). In the brain, monocytes can contribute to neuroinflammation through interactions with astrocytes, including inducing astrocyte secretion of cytokines and chemokines. In a human co-culture system, monocyte-derived IL-1β due to toll-like receptor 7 (TLR7)-activation, has been identified to promote astrocyte production of MCP-1 and IL-6. THC treatment of TLR7-stimulated co-culture suppressed monocyte secretion of IL-1β resulting in decreased astrocyte production of MCP-1 and IL-6. Furthermore, THC displayed direct inhibition of monocytes, as TLR7-stimulated monocyte monocultures treated with THC also showed suppressed IL-1β production. The cannabinoid receptor 2 (CB2) agonist, JWH-015, impaired monocyte IL-1β production similar to that of THC, suggesting THC is, in part, acting through CB2. THC also suppressed key elements of the IL-1β production pathway, including IL1B mRNA levels and caspase-1 activity. Collectively, this study demonstrates that the anti-inflammatory properties of THC suppress TLR7-induced monocyte secretion of IL-1β, through CB2, which results in decreased astrocyte secretion of MCP-1 and IL-6.

SIGNIFICANCE STATEMENT: As cannabis use is highly prevalent in the United States and has putative anti-inflammatory properties, it is important to investigate the effect of cannabinoids on immune cell function. Furthermore, cannabinoids have garnered particular interest due to their potential beneficial effects on attenuating viral-induced chronic neuroinflammation. This study utilized a primary human co-culture system to demonstrate that the major psychotropic cannabinoid in cannabis, Δ9-tetrahydrocannabinol (THC) and a cannabinoid receptor-2 (CB2) selective agonist, suppress specific monocyte-mediated astrocyte inflammatory responses. In the context of viral-induced chronic neuroinflammation, the findings presented here suggest that cannabinoids via CB2 ligation may have beneficial anti-inflammatory effects.”

https://www.ncbi.nlm.nih.gov/pubmed/31383729

http://jpet.aspetjournals.org/content/early/2019/08/05/jpet.119.260661

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

β-Caryophyllene Mitigates Collagen Antibody Induced Arthritis (CAIA) in Mice Through a Cross-Talk between CB2 and PPAR-γ Receptors.

biomolecules-logo “β-caryophyllene (BCP) is a cannabinoid receptor 2 (CB2) agonist that tempers inflammation.

An interaction between the CB2 receptor and peroxisome proliferator-activated receptor gamma (PPAR-γ) has been suggested and PPAR-γ activation exerts anti-arthritic effects.

The aim of this study was to characterize the therapeutic activity of BCP and to investigate PPAR-γ involvement in a collagen antibody induced arthritis (CAIA) experimental model.

BCP significantly hampered the severity of the disease, reduced relevant pro-inflammatory cytokines, and increased the anti-inflammatory cytokine IL-13. BCP also decreased joint expression of matrix metalloproteinases 3 and 9. Arthritic joints showed increased COX2 and NF-ĸB mRNA expression and reduced expression of the PPARγ coactivator-1 alpha, PGC-1α, and PPAR-γ. These conditions were reverted following BCP treatment.

Finally, BCP reduced NF-ĸB activation and increased PGC-1α and PPAR-γ expression in human articular chondrocytes stimulated with LPS. These effects were reverted by AM630, a CB2 receptor antagonist.

These results suggest that BCP ameliorates arthritis through a cross-talk between CB2 and PPAR-γ.”

https://www.ncbi.nlm.nih.gov/pubmed/31370242

https://www.mdpi.com/2218-273X/9/8/326

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”   https://www.ncbi.nlm.nih.gov/pubmed/18574142

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The curative effect of cannabinoid 2 receptor agonist on functional failure and disruptive inflammation caused by intestinal ischemia and reperfusion.

Fundamental & Clinical Pharmacology banner“Ischemia and reperfusion of intestinal tissue (intestinal I/R) induces disruption of ileal contractility and chain responses of inflammatory.

The aim of this study was to reveal whether therapeutic value of cannabinoid 2 (CB2) receptor activity in the intestinal I/R, via to the exogenous administration of CB2 agonist (AM-1241).

Intestinal I/R injury were performed through 30 min ischemia and 150 min reperfusion of mesenteric artery in Wistar rats. The pre-administered doses of 0.1, 1, and 5 mg/kg of CB2 agonist were studied to inhibit inflammation of intestinal I/R injury including ileum smooth muscle contractility, polymorphonuclear cell migration, oxidant/antioxidant defence system, and provocative cytokines.

Pre-administration with CB2 receptor agonist ensured to considerable improving the disrupted contractile responses in ileum smooth muscle along with decreased the formation of MDA that production of lipid peroxidation, reversed the depleted glutathione, inhibited the expression of TNF-α and of IL-1β in the intestinal I/R of rats.

Taken together results of this research, the agonistic activity of CB2 receptor for healing of intestinal I/R injury is ensuring associated with anti-inflammatory mechanisms such as the inhibiting of migration of inflammatory polymorphonuclear cells that origin of acute and initial responses of inflammation, the inhibiting of production of provocative and pro-inflammatory cytokines like TNF-α and IL-1β, the rebalancing of oxidant/antioxidant redox system disrupted in injury of reperfusion period, and the supporting of physiologic defensive systems in endothelial and inducible inflammatory cells.”

https://www.ncbi.nlm.nih.gov/pubmed/31373049

https://onlinelibrary.wiley.com/doi/abs/10.1111/fcp.12502

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabichromene is a cannabinoid CB2 receptor agonist.

British Journal of Pharmacology banner“Cannabichromene (CBC) is one of the most abundant phytocannabinoids in Cannabis spp. It has modest anti-nociceptive and anti-inflammatory effects and potentiates some effects of Δ9 – tetrahydrocannabinol (THC) in vivo. How CBC exerts these effects is poorly defined and there is little information about its efficacy at cannabinoid receptors. We sought to determine the functional activity of CBC at CB1 and CB2 receptors.

KEY RESULTS:

CBC activated CB2 but not CB1 receptors to produce a hyperpolarization of AtT20 cells. This activation was inhibited by a CB2 antagonist AM630, and sensitive to pertussis toxin. Application of CBC reduced activation of CB2 receptors (but not CB1 receptors) by subsequent co-application of CP55,940, an efficacious CB1 and CB2 agonist. Continuous CBC application induced loss of cell surface CB2 receptors and desensitisation of the CB2-induced hyperpolarization.

CONCLUSIONS AND IMPLICATIONS:

CBC is a selective CB2 receptor agonist displaying higher efficacy than THC in hyperpolarising AtT20 cells. CBC can also recruit CB2 receptor regulatory mechanisms. CBC may contribute to the potential therapeutic effectiveness of some cannabis preparations, potentially through CB2-mediated modulation of inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/31368508

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14815

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Targeting Cannabinoid Signaling in the Immune System: “High”-ly Exciting Questions, Possibilities, and Challenges

Image result for frontiers in immunology“It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the “phytocannabinoids” [pCBs; e.g., (−)-trans9-tetrahydrocannabinol (THC), (−)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances [“endocannabinoids” (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.]. These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes. The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc. Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and “recreational” marijuana consumption. Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.

Active Components of Cannabis sativa (Hemp)—Phytocannabinoids (pCBs) and Beyond

It is known since ancient times that consumption of different parts of the plant Cannabis sativa can lead to psychotropic effects. Moreover, mostly, but not exclusively because of its potent analgesic actions, it was considered to be beneficial in the management of several diseases. Nowadays it is a common knowledge that these effects were mediated by the complex mixture of biologically active substances produced by the plant. So far, at least 545 active compounds have been identified in it, among which, the best-studied ones are the so-called pCBs. It is also noteworthy that besides these compounds, ca. 140 different terpenes [including the potent and selective CB2 agonist sesquiterpene β-caryophyllene (BCP)], multiple flavonoids, alkanes, sugars, non-cannabinoid phenols, phenylpropanoids, steroids, fatty acids, and various nitrogenous compounds can be found in the plant, individual biological actions of which are mostly still nebulous. Among the so far identified > 100 pCBs, the psychotropic (−)-trans9-tetrahydrocannabinol (THC) and the non-psychotropic (−)-cannabidiol (CBD) are the best-studied ones, exerting a wide-variety of biological actions [including but not exclusively: anticonvulsive, analgesic, antiemetic, and anti inflammatory effects]. Of great importance, pCBs have been shown to modulate the activity of a plethora of cellular targets, extending their impact far beyond the “classical” (see above) cannabinoid signaling. Indeed, besides being agonists [or in some cases even antagonists of CB1 and CB2 cannabinoid receptors, some pCBs were shown to differentially modulate the activity of certain TRP channels, PPARs, serotonin, α adrenergic, adenosine or opioid receptors, and to inhibit COX and lipoxygenase enzymes, FAAH, EMT, etc.. Moreover, from a clinical point-of-view, it should also be noted that pCBs can indirectly modify pharmacokinetics of multiple drugs (e.g., cyclosporine A) by interacting with several cytochrome P 450 (CYP) enzymes. Taken together, pCBs can be considered as multitarget polypharmacons, each of them having unique “molecular fingerprints” created by the characteristic activation/inhibition pattern of its locally available cellular targets.

Concluding Remarks—Lessons to Learn from Cannabis

Research efforts of the past few decades have unambiguously evidenced that ECS is one of the central orchestrators of both innate and adaptive immune systems, and that pure pCBs as well as complex cannabis-derivatives can also deeply influence immune responses. Although, many open questions await to be answered, pharmacological modulation of the (endo)cannabinoid signaling, and restoration of the homeostatic eCB tone of the tissues augur to be very promising future directions in the management of several pathological inflammation-accompanied diseases. Moreover, in depth analysis of the (quite complex) mechanism-of-action of the most promising pCBs is likely to shed light to previously unknown immune regulatory mechanisms and can therefore pave new “high”-ways toward developing completely novel classes of therapeutic agents to manage a wide-variety of diseases.”

https://www.frontiersin.org/articles/10.3389/fimmu.2017.01487/full

www.frontiersin.org

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Investigating the safety and efficacy of nabilone for the treatment of agitation in patients with moderate-to-severe Alzheimer’s disease: Study protocol for a cross-over randomized controlled trial.

Contemporary Clinical Trials Communications“Agitation is a prevalent and difficult-to-treat symptom in patients with moderate-to-severe Alzheimer’s disease (AD). Though there are nonpharmacological and pharmacological interventions recommended for the treatment of agitation, the efficacy of these are modest and not always consistent. Furthermore, the safety profiles of currently prescribed medications are questionable.

Nabilone, a synthetic cannabinoid, has a distinct pharmacological profile that may provide a safer and more effective treatment for agitation, while potentially having benefits for weight and pain. Additionally, emerging evidence suggests nabilone may have neuroprotective effects.

We describe a clinical trial investigating the safety and efficacy of nabilone for the treatment of agitation in patients with moderate-to-severe AD.

A safe and efficacious pharmacological intervention for agitation, with effects on pain and weight loss in patients with moderate-to-severe AD could increase quality-of-life, reduce caregiver stress and avoid unnecessary institutionalization and related increases in health care costs.”

https://www.ncbi.nlm.nih.gov/pubmed/31338476

https://www.sciencedirect.com/science/article/pii/S2451865418301789?via%3Dihub

Nabilone is a man-made drug similar to the natural substances found in marijuana (cannabis).” https://www.webmd.com/drugs/2/drug-144706/nabilone-oral/details

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous