Astroglial monoacylglycerol lipase controls mutant huntingtin-induced damage of striatal neurons.

Neuropharmacology

“Cannabinoids exert neuroprotection in a wide array of preclinical models. A number of these studies has focused on cannabinoid CB1receptors in striatal medium spiny neurons (MSNs) and the most characteristic MSN-degenerative disease, Huntington’s disease (HD). Accruing evidence supports that astrocytes contribute to drive HD progression, and that they express CB1 receptors, degrade endocannabinoids, and modulate endocannabinergic transmission. However, the possible role of the astroglial endocannabinoidsystem in controlling MSN integrity remains unknown. Here, we show that JZL-184, a selective inhibitor of monoacylglycerol lipase (MGL), the key enzyme that deactivates the endocannabinoid 2-arachidonoylglycerol, prevented the mutant huntingtin-induced up-regulation of the pro-inflammatory cytokine tumor necrosis factor-α in primary mouse striatal astrocytes via CB1 receptors. To study the role of astroglial MGL in vivo, we injected stereotactically into the mouse dorsal striatum viral vectors that encode mutant or normal huntingtin under the control of the glial fibrillary acidic protein promoter. We observed that, in wild-type mice, pharmacological blockade of MGL with JZL-184 (8 mg/kg/day, i.p.) conferred neuroprotection against mutant huntingtin-induced striatal damage, as evidenced by the prevention of MSN loss, astrogliosis, and motor coordination impairment. We next found that conditional mutant mice bearing a genetic deletion of MGL selectively in astroglial cells (MGLfloxed/floxed;GFAP-Cre/+ mice) were resistant to mutant huntingtin-induced MSN loss, astrogliosis, and motor coordination impairment. Taken together, these data support that astroglial MGL controls the availability of a 2-arachidonoylglycerol pool that ensues protection of MSNs in the mouse striatum in vivo, thus providing a potential druggable target for reducing striatal neurodegeneration.”

https://www.ncbi.nlm.nih.gov/pubmed/30914306

https://www.sciencedirect.com/science/article/pii/S0028390819301066?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

In-silico designing and characterization of binding modes of two novel inhibitors for CB1 receptor against obesity by classical 3D-QSAR approach.

Journal of Molecular Graphics and Modelling

“Obesity is the fifth primary hazard for mortality in the world; hence different therapeutic targets are explored to overcome this problem.

Endocannabinoid is identified as the emerging target for the treatment of obesity as Cannabinoid 1 (CB1) receptor over-activation resulted in abdominal obesity.

Potent antagonists or inverse agonists for CB1 receptor are the new strategies to develop anti-obesity drugs.

The obtained results signify the potential of the developed model; suggesting that the models can be useful to test and design potent novel CB1 receptor antagonists or inverse agonists prior to the synthesis.”

https://www.ncbi.nlm.nih.gov/pubmed/30908997

“Potent antagonists or inverse agonists for CB1 receptor are the new strategies to develop anti-obesity drugs.”

https://www.sciencedirect.com/science/article/pii/S1093326318308398?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

A patent update on cannabinoid receptor 1 antagonists (2015-2018).

Publication Cover

“The endocannabinoid system is an important regulator of various physiological processes. Preclinical and clinical studies indicate that attenuation of the endocannabinoid system via antagonism of the type 1 cannabinoid receptor (CB1) is an excellent strategy to treat obesity, metabolic syndrome and associated disorders. However, centrally acting antagonists of CB1 also produce adverse effects like depression and anxiety. Current efforts are geared towards discovery and optimization of antagonists and modulators of CB1 that have limited brain penetration. Areas Covered: Several recent publications and patent applications support the development of peripherally acting CB1 receptor antagonists and modulators. In this review, recent patents and applications (2015 – 2018) are summarized and discussed. Expert Opinion: Approximately 30 new inventions have been reported since 2015, along with 3 recent commercial deals, highlighting the importance of this class of therapeutics. Taken together, peripherally acting CB1 receptor antagonists and modulators are an emerging class of drugs for metabolic syndrome, non-alcoholic steatohepatitis (NASH) and other important disorders where this receptor has been implicated.”

https://www.ncbi.nlm.nih.gov/pubmed/30889997

https://www.tandfonline.com/doi/abs/10.1080/13543776.2019.1597851?journalCode=ietp20

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Oral administration of the cannabigerol derivative VCE-003.2 promotes subventricular zone neurogenesis and protects against mutant huntingtin-induced neurodegeneration.

 “The administration of certain cannabinoids provides neuroprotection in models of neurodegenerative diseases by acting through various cellular and molecular mechanisms. Many cannabinoid actions in the nervous system are mediated by CB1receptors, which can elicit psychotropic effects, but other targets devoid of psychotropic activity, including CB2 and nuclear PPARγ receptors, can also be the target of specific cannabinoids.

METHODS:

We investigated the pro-neurogenic potential of the synthetic cannabigerol derivative, VCE-003.2, in striatal neurodegeneration by using adeno-associated viral expression of mutant huntingtin in vivo and mouse embryonic stem cell differentiation in vitro.

RESULTS:

Oral administration of VCE-003.2 protected striatal medium spiny neurons from mutant huntingtin-induced damage, attenuated neuroinflammation and improved motor performance. VCE-003.2 bioavailability was characterized and the potential undesired side effects were evaluated by analyzing hepatotoxicity after chronic treatment. VCE-003.2 promoted subventricular zone progenitor mobilization, increased doublecortin-positive migrating neuroblasts towards the injured area, and enhanced effective neurogenesis. Moreover, we demonstrated the proneurogenic activity of VCE-003.2 in embryonic stem cells. VCE-003.2 was able to increase neuroblast formation and striatal-like CTIP2-mediated neurogenesis.

CONCLUSIONS:

The cannabigerol derivative VCE-003.2 improves subventricular zone-derived neurogenesis in response to mutant huntingtin-induced neurodegeneration, and is neuroprotective by oral administration.”

https://www.ncbi.nlm.nih.gov/pubmed/30899454

https://translationalneurodegeneration.biomedcentral.com/articles/10.1186/s40035-019-0148-x

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

New Insights of Uterine Leiomyoma Pathogenesis: Endocannabinoid System.

 

“The aim of this study was to determine if components of the endocannabinoid system are modulated in uterine leiomyomas (fibroids). Components studied included cannabinoid receptors 1 (CB1) and 2 (CB2); the G protein-coupled receptor GPR55; transient potential vanilloid receptor 1 (TRPV1) and the endocannabinoid modulating enzymes N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) and fatty acid amide hydrolase (FAAH), and their N-acylethanolamine (NAE) ligands: N-arachidonylethanolamine (AEA), N-oleoylethanolamine (OEA), and N-palmityolethanaolamine (PEA). MATERIAL AND METHODS Transcript levels of CB1, CB2, TRPV1, GPR55, NAPE-PLD, and FAAH were measured using RT-PCR and correlated with the tissue levels of the 3 NAEs in myometrial tissues. The tissues studied were: 1) fibroids, 2) myometrium adjacent/juxtaposed to the fibroid lesions, and 3) normal myometrium. Thirty-seven samples were processed for NAE measurements and 28 samples were used for RT-PCR analyses. RESULTS FAAH expression was significantly lower in fibroids, resulting in a NAPE-PLD: FAAH ratio that favors higher AEA levels in pre-menopausal tissues, whilst PEA levels were significantly lower, particularly in post-menopausal women, suggesting PEA protects against fibroid pathogenesis. The CB1: CB2 ratio was lower in fibroids, suggesting that loss of CB1 expression affects the fibroid cell phenotype. Significant correlations between reduced FAAH, CB1, and GPR55 expression and PEA in fibroids indicate that the loss of these endocannabinoid system components are biomarkers of leiomyomata. CONCLUSIONS Loss of expression of CB1, FAAH, GPR55, and PEA production are linked to the pathogenesis of uterine fibroids and further understanding of this might eventually lead to better disease indicators or the development of therapeutic potentials that might eventually be used in the management of uterine fibroids.”

https://www.ncbi.nlm.nih.gov/pubmed/30842391

https://basic.medscimonit.com/abstract/index/idArt/914019

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Expression of Cannabinoid Receptors in Myometrium and its Correlation With Dysmenorrhea in Adenomyosis.

 

Related image

“The myometrium, especially the junctional zone (JZ), is now well documented to have a role in the pathogenesis of adenomyosis. Cannabinoid receptors have been shown to participate in the establishment of endometriosis and its pain perception. However, its relation to adenomyosis has not been identified yet. The aim of this study was to investigate the expression of cannabinoid receptor type I (CB1) and type II (CB2) in myometrium of uteri with and without adenomyosis and determine the correlation between their levels and clinical parameters of adenomyosis. We collected tissue samples of JZ and the outer myometrium from 45 premenopausal women with adenomyosis and 34 women without adenomyosis. CB1 and CB2 messenger RNA (mRNA) and protein expression levels were evaluated by the use of Western blotting and real-time quantitative polymerase chain reaction from all samples. Clinical information on the severity of dysmenorrhea and other data were collected. We found both CB1 and CB2 mRNA and protein levels in women with adenomyosis were significantly higher than those of controls, and CB1 expression levels in JZ were positively correlated with the severity of dysmenorrhea. These data suggest that cannabinoid receptor CB1 may be involved in the pathogenesis of dysmenorrhea in adenomyosis and may be a potential therapeutic target.”

https://www.ncbi.nlm.nih.gov/pubmed/30832539

https://journals.sagepub.com/doi/abs/10.1177/1933719119833483?journalCode=rsxb

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Plant-Based Modulators of Endocannabinoid Signaling.

Journal of Natural Products

“Extracts from Cannabis species have aided the discovery of the endocannabinoid signaling system (ECSS) and phytocannabinoids that possess broad therapeutic potential. Whereas the reinforcing effects of C. sativa are largely attributed to CB1 receptor agonism by Δ9-tetrahydrocannabinol (Δ9-THC), the observed medicinal effects of Cannabis arise from the combined actions of various compounds. In addition to compounds bearing a classical cannabinoid structure, naturally occurring fatty acid amides and esters resembling anandamide and 2-arachidonoyl glycerol isolated from non- Cannabis species are also valuable tools for studying ECSS function. This review highlights the potential of plant-based secondary metabolites from Cannabis and unrelated species as ECSS modulators.”

https://www.ncbi.nlm.nih.gov/pubmed/30816712

https://pubs.acs.org/doi/10.1021/acs.jnatprod.8b00874

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Decreased Expression of Cannabinoid Receptors in the Eutopic and Ectopic Endometrium of Patients with Adenomyosis.

Image result for hindawi journal

“Adenomyosis is a common gynecologic benign disease that may have a life-long negative impact on women.

Previous studies have indicated that the endocannabinoid system may participate in the progress of endometriosis.

Our research aims to analyze the expression patterns of the typical cannabinoid receptors (CB1 and CB2), the main constituents of the endocannabinoid system, in endometrial samples derived from patients diagnosed as adenomyosis or not.

RESULTS:

In either the proliferative or the secretory phase, CB1 and CB2 protein and mRNA levels were both significantly lower in the eutopic and ectopic endometrium of adenomyosis when compared with normal endometrium. For women with adenomyosis, CB1 and CB2 protein and mRNA levels were much lower in the ectopic endometrium than the eutopic in both phases of the cycle. Both CB1 and CB2 protein and mRNA levels were increased during the secretory phase in normal endometrium, while CB1 lost its cyclic variation in the eutopic and ectopic endometrium from patients diagnosed as adenomyosis.

CONCLUSION:

The decreased expression of CB1 and CB2 in the eutopic and ectopic endometrium from patients diagnosed as adenomyosis suggests that cannabinoid receptors may participate in the pathogenesis of adenomyosis.”

https://www.ncbi.nlm.nih.gov/pubmed/30800671

“In conclusion, we found a significant decrease in the cannabinoid receptors CB1 and CB2 in the eutopic and ectopic endometrium of patients with adenomyosis, regardless of the menstrual phase, suggesting that CB1 and CB2 participate in the pathogenesis of this condition.”

https://www.hindawi.com/journals/bmri/2019/5468954/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

What are the psychological effects of using synthetic cannabinoids? A systematic review

 Image result for journal of psychopharmacology

“Synthetic cannabinoids are, typically, full agonists at the cannabinoid CB1 receptor, and therefore considerably more potent than natural cannabis and may have correspondingly more serious psychological effects.

The purpose of this study was to synthesise the available research on the psychological consequences of synthetic cannabinoid use.

 

Non-controlled, cross-sectional studies generally showed that synthetic cannabinoid users had lower performance on cognitive tasks and showed elevated symptomatology (e.g. paranoia) compared to both natural cannabis and non-cannabis users.

 

Acute synthetic cannabinoid use can result in a range of psychological outcomes and, when non-intoxicated, synthetic cannabinoid users appear to differ from natural cannabis and non-users on various affective and cognitive domains.”

https://www.ncbi.nlm.nih.gov/pubmed/30789300

https://journals.sagepub.com/doi/abs/10.1177/0269881119826592?journalCode=jopa

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Muscle cannabinoid 1 receptor regulates Il-6 and myostatin expression, governing physical performance and whole-body metabolism.

“Sarcopenic obesity, the combination of skeletal muscle mass and function loss with an increase in body fat, is associated with physical limitations, cardiovascular diseases, metabolic stress, and increased risk of mortality. Cannabinoid receptor type 1 (CB1R) plays a critical role in the regulation of whole-body energy metabolism because of its involvement in controlling appetite, fuel distribution, and utilization. Inhibition of CB1R improves insulin secretion and insulin sensitivity in pancreatic β-cells and hepatocytes. We have now developed a skeletal muscle-specific CB1R-knockout (Skm-CB1R-/-) mouse to study the specific role of CB1R in muscle. Muscle-CB1R ablation prevented diet-induced and age-induced insulin resistance by increasing IR signaling. Moreover, muscle-CB1R ablation enhanced AKT signaling, reducing myostatin expression and increasing IL-6 secretion. Subsequently, muscle-CB1R ablation increased myogenesis through its action on MAPK-mediated myogenic gene expression. Consequently, Skm-CB1R-/- mice had increased muscle mass and whole-body lean/fat ratio in obesity and aging. Muscle-CB1R ablation improved mitochondrial performance, leading to increased whole-body muscle energy expenditure and improved physical endurance, with no change in body weight. These results collectively show that CB1R in muscle is sufficient to regulate whole-body metabolism and physical performance and is a novel target for the treatment of sarcopenic obesity.”

https://www.ncbi.nlm.nih.gov/pubmed/30726112

https://www.fasebj.org/doi/10.1096/fj.201801145R

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous