The Endocannabinoid System of Animals.

 animals-logo“The endocannabinoid system has been found to be pervasive in mammalian species. It has also been described in invertebrate species as primitive as the Hydra. Insects, apparently, are devoid of this, otherwise, ubiquitous system that provides homeostatic balance to the nervous and immune systems, as well as many other organ systems.

The endocannabinoid system (ECS) has been defined to consist of three parts, which include (1) endogenous ligands, (2) G-protein coupled receptors (GPCRs), and (3) enzymes to degrade and recycle the ligands. Two endogenous molecules have been identified as ligands in the ECS to date.

The endocannabinoids are anandamide (arachidonoyl ethanolamide) and 2-AG (2-arachidonoyl glycerol). Two G-coupled protein receptors (GPCR) have been described as part of this system, with other putative GPC being considered.

Coincidentally, the phytochemicals produced in large quantities by the Cannabis sativa L plant, and in lesser amounts by other plants, can interact with this system as ligands. These plant-based cannabinoids are termed phytocannabinoids.

The precise determination of the distribution of cannabinoid receptors in animal species is an ongoing project, with the canine cannabinoid receptor distribution currently receiving the most interest in non-human animals.”

https://www.ncbi.nlm.nih.gov/pubmed/31527410

https://www.mdpi.com/2076-2615/9/9/686

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Insights into the role of cannabis in the management of inflammatory bowel disease.

Image result for therapeutic advances in gastroenterology“Cannabis, a drug made up of the flowers and buds of the Cannabis sativa plant, has been used therapeutically for centuries. Ancient Chinese cultures have reported use in their medical practices, dating back as early as 2700 BC.  Although widely used recreationally during the 19th and 20th centuries, the use of medical cannabis has exploded over the last decade, as a result of mainstream cultural acceptance and legalization in several countries around the world.

Over the last decade, interest in the therapeutic potential of cannabis and its constituents (e.g. cannabidiol) in the management of inflammatory bowel diseases (IBD) has escalated. Cannabis has been increasingly approved for a variety of medical conditions in several jurisdictions around the world.

In animal models, cannabinoids have been shown to improve intestinal inflammation in experimental models of IBD through their interaction with the endocannabinoid system. However, the few randomized controlled trials of cannabis or cannabidiol in patients with IBD have not demonstrated efficacy in modulating inflammatory disease activity.

Cannabis may be effective in the symptomatic management of IBD. Given the increasing utilization and cultural acceptance of cannabis, physicians need to be aware of its safety and efficacy in order to better counsel patients. The aim of this review is to provide an overview of the role of cannabis in the management of patients with IBD.

There is emerging evidence that cannabis may play a role in the management of patients with IBD. Many patients are already using cannabis to help manage symptoms associated with the disease, and physicians cannot ignore this when taking histories and managing their patients.”

https://www.ncbi.nlm.nih.gov/pubmed/31523278

https://journals.sagepub.com/doi/10.1177/1756284819870977

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidivarin Treatment Ameliorates Autism-Like Behaviors and Restores Hippocampal Endocannabinoid System and Glia Alterations Induced by Prenatal Valproic Acid Exposure in Rats.

 Image result for frontiers in cellular neuroscience“Autism spectrum disorder (ASD) is a developmental condition whose primary features include social communication and interaction impairments with restricted or repetitive motor movements. No approved treatment for the core symptoms is available and considerable research efforts aim at identifying effective therapeutic strategies.

Emerging evidence suggests that altered endocannabinoid signaling and immune dysfunction might contribute to ASD pathogenesis. In this scenario, phytocannabinoids could hold great pharmacological potential due to their combined capacities to act either directly or indirectly on components of the endocannabinoid system and to modulate immune functions.

Among all plant-cannabinoids, the phytocannabinoid cannabidivarin (CBDV) was recently shown to reduce motor impairments and cognitive deficits in animal models of Rett syndrome, a condition showing some degree of overlap with autism, raising the possibility that CBDV might have therapeutic potential in ASD.

Here, we investigated the ability of CBDV treatment to reverse or prevent ASD-like behaviors in male rats prenatally exposed to valproic acid (VPA; 500 mg/kg i.p.; gestation day 12.5).

CBDV in symptomatic rats recovered social impairments, social novelty preference, short-term memory deficits, repetitive behaviors and hyperlocomotion whereas preventative treatment reduced sociability and social novelty deficits, short-term memory impairments and hyperlocomotion, without affecting stereotypies.

As dysregulations in the endocannabinoid system and neuroinflammatory markers contribute to the development of some ASD phenotypes in the VPA model, neurochemical studies were performed after symptomatic treatment to investigate possible CBDV’s effects on the endocannabinoid system, inflammatory markers and microglia activation in the hippocampus and prefrontal cortex.

Prenatal VPA exposure increased CB1 receptor, FAAH and MAGL levels, enhanced GFAP, CD11b, and TNFα levels and triggered microglia activation restricted to the hippocampus. All these alterations were restored after CBDV treatment.

These data provide preclinical evidence in support of the ability of CBDV to ameliorate behavioral abnormalities resembling core and associated symptoms of ASD. At the neurochemical level, symptomatic CBDV restores hippocampal endocannabinoid signaling and neuroinflammation induced by prenatal VPA exposure.”

https://www.ncbi.nlm.nih.gov/pubmed/31447649

https://www.frontiersin.org/articles/10.3389/fncel.2019.00367/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Myrcene and terpene regulation of TRPV1.

Publication Cover“Nociceptive Transient Receptor Potential channels such as TRPV1 are targets for treating pain. Both antagonism and agonism of TRP channels can promote analgesia, through inactivation and chronic desensitization.

Since plant-derived mixtures of cannabinoids and the Cannabis component myrcene have been suggested as pain therapeutics, we screened terpenes found in Cannabis for activity at TRPV1.

These data establish TRPV1 as a target of Myrcene and suggest the therapeutic potential of analgesic formulations containing Myrcene.”

https://www.ncbi.nlm.nih.gov/pubmed/31446830

https://www.tandfonline.com/doi/full/10.1080/19336950.2019.1654347

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Preclinical evidence on the anticancer properties of phytocannabinoids

Image result for CROSBI“Phytocannabinoids are unique terpenophenolic compounds predominantly produced in the glandular trichomes of the cannabis plant (Cannabis sativa L.). The delta-9- tetrahydrocannabinol (THC) is the main active constituent responsible for the plant’s psychoactive effect and, together with the non- psychoactive cannabidiol (CBD), the most investigated naturally occurring cannabinoid.

The first report on the antitumor properties of cannabis compounds appeared more than forty years ago, but the potential of targeting the endocannabinoid system in cancer has recently attracted increasing interest. Our study aimed to review the last decade’s findings on the anticancer potential of plant- derived cannabinoids and the possible mechanisms of their activity.

A large body of in vitro data has been accumulated demonstrating that phytocannabinoids affect a wide spectrum of tumor cells, including gliomas, neuroblastomas, hepatocarcinoma as well as skin, prostate, breast, cervical, colon, pancreatic, lung and hematological cancer.

It has been found that they can stop the uncontrolled growth of cancer cells through the cell-cycle arrest, inhibition of cell proliferation and induction of autophagy and apoptosis. They can also block all the steps of tumor progression, including tumor cell migration, adhesion and invasion as well as angiogenesis. The observed effects are mainly mediated by the cannabinoid CB1 and/or CB2 receptors, although some other receptors and mechanisms unrelated to receptor stimulation may also be involved.

The majority of available animal studies confirmed that phytocannabinoids are capable of effectively decreasing cancer growth and metastasis in vivo. THC was found to be effective against experimental glioma, liver, pancreatic, breast and lung cancer while CBD showed activity against glioma and neuroblastoma, melanoma, colon, breast, prostate and lung cancer. Further in vitro and in vivo studies also greatly support their use in combination with traditional chemotherapy or radiotherapy, which results in improved efficiency, attenuated toxicity or reduced drug resistance.

Taken together most of available preclinical results emphasize the extensive therapeutic potential of THC and CBD in various types of cancers. The potential clinical interest of cannabinoids is additionally suggested by their selectivity for tumor cells as well as their good tolerance and the absence of normal tissue toxicity, which are still the major limitations of most conventional drugs. The accumulated preclinical evidence strongly suggests the need for clinical testing of cannabinoids in cancer patients.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol and the Remainder of the Plant Extract Modulate the Effects of Δ9-Tetrahydrocannabinol on Fear Memory Reconsolidation.

Image result for frontiers in behavioral neuroscience “Δ9-Tetrahydrocannabinol (THC, a CB1 receptor agonist) and Cannabidiol (CBD, a non-competitive antagonist of endogenous CB1 and CB2 ligands) are two primary components of Cannabis species, and may modulate fear learning in mammals.

The CB1 receptor is widely distributed throughout the cortex and some limbic regions typically associated with fear learning. Humans with posttraumatic disorder (PTSD) have widespread upregulation of CB1 receptor density and reduced availability of endogenous cannabinoid anandamide, suggesting a role for the endocannabinoid system in PTSD.

Pharmacological blockade of memory reconsolidation following recall of a conditioned response modulates the expression of learned fear and may represent a viable target for the development of new treatments for PTSD.

In this study, we focused on assessing the impact of the key compounds of the marijuana plant both singly and, more importantly, in concert on attenuation of learned fear. Specifically, we assessed the impact of THC, CBD, and/or the remaining plant materials (post-extraction; background material), on reconsolidation of learned fear.

Results: CBD alone, but not THC alone, significantly attenuated fear memory reconsolidation when administered immediately after recall. The effect persisted for at least 7 days. A combination of CBD and THC also attenuated the fear response. Plant BM also significantly attenuated reconsolidation of learned fear both on its own and in combination with THC and CBD. Finally, THC attenuated reconsolidation of learned fear only when co-administered with CBD or plant BM.

Conclusion: CBD may provide a novel treatment strategy for targeting fear-memories. Furthermore, plant BM also significantly attenuated the fear response. However, whereas THC alone had no significant effects, its effects were modulated by the addition of other compounds. Future research should investigate some of the other components present in the plant BM (such as terpenes) for their effects alone, or in combination with isolated pure cannabinoids, on fear learning.”

https://www.ncbi.nlm.nih.gov/pubmed/31417379

https://www.frontiersin.org/articles/10.3389/fnbeh.2019.00174/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Terpenes in Cannabis sativa – From plant genome to humans.

Plant Science“Cannabis sativa (cannabis) produces a resin that is valued for its psychoactive and medicinal properties.

Despite being the foundation of a multi-billion dollar global industry, scientific knowledge and research on cannabis is lagging behind compared to other high-value crops. This is largely due to legal restrictions that have prevented many researchers from studying cannabis, its products, and their effects in humans.

Cannabis resin contains hundreds of different terpene and cannabinoid metabolites.

Our understanding of the genomic and biosynthetic systems of these metabolites in cannabis, and the factors that affect their variability, is rudimentary. As a consequence, there is concern about lack of consistency with regard to the terpene and cannabinoid composition of different cannabis ‘strains’.

Likewise, claims of some of the medicinal properties attributed to cannabis metabolites would benefit from thorough scientific validation.”

https://www.ncbi.nlm.nih.gov/pubmed/31084880

https://www.sciencedirect.com/science/article/pii/S0168945219301190?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Analysis of Terpenes in Cannabis sativa L. Using GC/MS: Method Development, Validation, and Application.

“Terpenes are the major components of the essential oils present in various Cannabis sativa L. varieties.

These compounds are responsible for the distinctive aromas and flavors. Besides the quantification of the cannabinoids, determination of the terpenes in C. sativa strains could be of importance for the plant selection process.

At the University of Mississippi, a GC-MS method has been developed and validated for the quantification of terpenes in cannabis plant material, viz., α-pinene, β-pinene, β-myrcene, limonene, terpinolene, linalool, α-terpineol, β-caryophyllene, α-humulene, and caryophyllene oxide.”

https://www.ncbi.nlm.nih.gov/pubmed/30646402

https://www.thieme-connect.de/products/ejournals/abstract/10.1055/a-0828-8387

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis Use Motivations among Adults Prescribed Opioids for Pain versus Opioid Addiction.

Pain Management Nursing“Cannabis has been linked to reduced opioid use, although reasons for cannabis use among adults prescribed opioids are unclear.

The purpose of this study was to determine whether motivations for cannabis use differ between adults prescribed opioids for persistent pain versus those receiving opioids as medication-assisted treatment for opioid use disorder.

RESULTS:

More than half the sample (n = 122) reported current, daily cannabis use and 63% reported pain as a motivation for use. Adults with persistent pain were more likely to be older, female, and have higher levels of education (p < .05). Adults with opioid use disorder were more likely to report “enhancement” (p < .01) and relief of drug withdrawal symptoms (p < .001) as motivations for cannabis use. The most common reasons for cannabis use in both populations were social and recreational use and pain relief.

CONCLUSIONS:

Both studied populations have unmet health needs motivating them to use cannabis and commonly use cannabis for pain. Persistent pain participants were less likely to use cannabis for euphoric effects or withdrawal purposes. Nurses should assess for cannabis use, provide education on known risks and benefits, and offer options for holistic symptom management.”

https://www.ncbi.nlm.nih.gov/pubmed/31375419

https://www.painmanagementnursing.org/article/S1524-9042(19)30096-7/fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Pharmacological and Therapeutic Properties of Cannabidiol for Epilepsy.

 “Cannabidiol (CBD) is a major active component of the Cannabis plant, which, unlike tetrahydrocannabinol (THC), is devoid of euphoria-inducing properties.

During the last 10 years, there has been increasing interest in the use of CBD-enriched products for the treatment of epilepsy.

In 2018, an oil-based highly purified liquid formulation of CBD (Epidiolex) derived from Cannabis sativa was approved by the US Food and Drug Administration for the treatment of seizures associated with Dravet syndrome (DS) and Lennox-Gastaut syndrome (LGS).

The mechanisms underlying the antiseizure effects of CBD are unclear but may involve, among others, antagonism of G protein-coupled receptor 55 (GPR55), desensitization of transient receptor potential of vanilloid type 1 (TRPV1) channels, and inhibition of adenosine reuptake. CBD has complex and variable pharmacokinetics, with a prominent first-pass effect and a low oral bioavailability that increases fourfold when CBD is taken with a high-fat/high-calorie meal.

In four randomized, double-blind, parallel-group, adjunctive-therapy trials, CBD given at doses of 10 and 20 mg/kg/day administered in two divided administrations was found to be superior to placebo in reducing the frequency of drop seizures in patients with LGS and convulsive seizures in patients with DS.

Preliminary results from a recently completed controlled trial indicate that efficacy also extends to the treatment of seizures associated with the tuberous sclerosis complex.

The most common adverse events that differentiated CBD from placebo in controlled trials included somnolence/sedation, decreased appetite, increases in transaminases, and diarrhea, behavioral changes, skin rashes, fatigue, and sleep disturbances.

About one-half of the patients included in the DS and LGS trials were receiving concomitant therapy with clobazam, and in these patients a CBD-induced increase in serum levels of the active metabolite norclobazam may have contributed to improved seizure outcomes and to precipitation of some adverse effects, particularly somnolence.”

https://www.ncbi.nlm.nih.gov/pubmed/31372958

https://link.springer.com/article/10.1007%2Fs40265-019-01171-4

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous