Pharmacological Foundations of Cannabis Chemovars.

“An advanced Mendelian Cannabis breeding program has been developed utilizing chemical markers to maximize the yield of phytocannabinoids and terpenoids with the aim to improve therapeutic efficacy and safety.

Cannabis is often divided into several categories based on cannabinoid content. Type I, Δ9-tetrahydrocannabinol-predominant, is the prevalent offering in both medical and recreational marketplaces. In recent years, the therapeutic benefits of cannabidiol have been better recognized, leading to the promotion of additional chemovars: Type II, Cannabis that contains both Δ9-tetrahydrocannabinol and cannabidiol, and cannabidiol-predominant Type III Cannabis.

While high-Δ9-tetrahydrocannabinol and high-myrcene chemovars dominate markets, these may not be optimal for patients who require distinct chemical profiles to achieve symptomatic relief. Type II Cannabis chemovars that display cannabidiol- and terpenoid-rich profiles have the potential to improve both efficacy and minimize adverse events associated with Δ9-tetrahydrocannabinol exposure. Cannabis samples were analyzed for cannabinoid and terpenoid content, and analytical results are presented via PhytoFacts, a patent-pending method of graphically displaying phytocannabinoid and terpenoid content, as well as scent, taste, and subjective therapeutic effect data.

Examples from the breeding program are highlighted and include Type I, II, and III Cannabis chemovars, those highly potent in terpenoids in general, or single components, for example, limonene, pinene, terpinolene, and linalool. Additionally, it is demonstrated how Type I - III chemovars have been developed with conserved terpenoid proportions. Specific chemovars may produce enhanced analgesia, anti-inflammatory, anticonvulsant, antidepressant, and anti-anxiety effects, while simultaneously reducing sequelae of Δ9-tetrahydrocannabinol such as panic, toxic psychosis, and short-term memory impairment.”

https://www.ncbi.nlm.nih.gov/pubmed/29161743

https://www.thieme-connect.de/DOI/DOI?10.1055/s-0043-122240

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Antiepileptic potential of cannabidiol analogs.

“In audiogenic seizure (AGS) susceptible rats, the acute (intraperitoneal and intravenous) dose-response effects of (–)-cannabidiol (CBD) for preventing AGS and for causing rototod neurotoxicity (ROT) were determined.

Also, the anti-AGS and ROT effects of 10 CBD analogs, given in intravenous doses equivalent to the AGS-ED50 (15 mg/kg) and ROT-ID50 (31 mg/kg) of CBD, were ascertained.

Compared to CBD, (–)-CBD diacetate and (–)-4-(2′-olivetyl)-alpha-pinene were equally effective whereas (–)-CBD monomethyl ether, (–)-CBD dimethyl ether, (–)-3′-acetyl-CBD monoacetate, (+)-4-(2′-olivetyl)-alpha-pinene, (–)-and (+)-4-(6′-olivetyl)-alpha-pinene, (+/-)-AF-11, and olivetol were less effective anticonvulsants. Except for (–)- and (+)-4-(2′-olivetyl)-alpha-pinene and olivetol, all analogs showed less ROT than CBD.

Also, CBD and all analogs were not active in tetrahydrocannabinol seizure-susceptible rabbits, the latter a putative model of cannabinoid psychoactivity in humans.

These data suggest anticonvulsant requirements of 2 free phenolic hydroxyl groups, exact positioning of the terpinoid moiety in the resorcinol system and correct stereochemistry.

Moreover, findings of separation of anticonvulsant from neurotoxic and psychoactive activities, notably with CBD diacetate, suggest that additional structural modifications of CBD may yield novel antiepileptic drugs.”

http://www.ncbi.nlm.nih.gov/pubmed/7298873

http://www.thctotalhealthcare.com/category/epilepsy-2/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous