The non-psychoactive phytocannabinoid cannabidiol (CBD) attenuates pro-inflammatory mediators, T cell infiltration, and thermal sensitivity following spinal cord injury in mice.

Cellular Immunology

“We evaluated the effects of the non-psychoactive cannabinoid cannabidiol (CBD) on the inflammatory response and recovery of function following spinal cord injury (SCI).

Female C57Bl/6 mice were exposed to spinal cord contusion injury (T9-10) and received vehicle or CBD (1.5 mg/kg IP) injections for 10 weeks following injury. The effect of SCI and CBD treatment on inflammation was assessed via microarray, qRT-PCR and flow cytometry. Locomotor and bladder function and changes in thermal and mechanical hind paw sensitivity were also evaluated.

There was a significant decrease in pro-inflammatory cytokines and chemokines associated with T-cell differentiation and invasion in the SCI-CBD group as well as a decrease in T cell invasion into the injured cord. A higher percentage of SCI mice in the vehicle-treated group (SCI-VEH) went on to develop moderate to severe (0-65.9% baseline thermal threshold) thermal sensitivity as compared with CBD-treated (SCI-CBD) mice. CBD did not affect recovery of locomotor or bladder function following SCI.

Taken together, CBD treatment attenuated the development of thermal sensitivity following spinal cord injury and this effect may be related to protection against pathological T-cell invasion.”

https://www.ncbi.nlm.nih.gov/pubmed/29784129

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Possible mechanisms of cannabinoid-induced antinociception in the spinal cord.

European Journal of Pharmacology

“Anandamide is an endogenous ligand at both the inhibitory cannabinoid CB(1) receptor and the excitatory vanilloid receptor 1 (VR1). The CB(1) receptor and vanilloid VR1 receptor are expressed in about 50% and 40% of dorsal root ganglion neurons, respectively. While all vanilloid VR1 receptor-expressing cells belong to the calcitonin gene-related peptide-containing and isolectin B4-binding sub-populations of nociceptive primary sensory neurons, about 80% of the cannabinoid CB(1) receptor-expressing cells belong to those sub-populations. Furthermore, all vanilloid VR1 receptor-expressing cells co-express the cannabinoid CB(1) receptor.

In agreement with these findings, neonatal capsaicin treatment that induces degeneration of capsaicin-sensitive, vanilloid VR1 receptor-expressing, thin, unmyelinated, nociceptive primary afferent fibres significantly reduced the cannabinoid CB(1) receptor immunostaining in the superficial spinal dorsal horn.

Synthetic cannabinoid CB(1) receptor agonists, which do not have affinity at the vanilloid VR1 receptor, and low concentrations of anandamide both reduce the frequency of miniature excitatory postsynaptic currents and electrical stimulation-evoked or capsaicin-induced excitatory postsynaptic currents in substantia gelatinosa cells in the spinal cord without any effect on their amplitude. These effects are blocked by selective cannabinoid CB(1) receptor antagonists. Furthermore, the paired-pulse ratio is increased while the postsynaptic response of substantia gelatinosa neurons induced by alpha-amino-3-hydroxy-5-methylisoxasole-propionic acid (AMPA) in the presence of tetrodotoxin is unchanged following cannabinoid CB(1) receptor activation.

These results strongly suggest that the cannabinoid CB(1) receptor is expressed presynaptically and that the activation of these receptors by synthetic cannabinoid CB(1) receptor agonists or low concentration of anandamide results in inhibition of transmitter release from nociceptive primary sensory neurons. High concentrations of anandamide, on the other hand, increase the frequency of miniature excitatory postsynaptic currents recorded from substantia gelatinosa neurons. This increase is blocked by ruthenium red, suggesting that this effect is mediated through the vanilloid VR1 receptor.

Thus, anandamide at high concentrations can activate the VR1 and produce an opposite, excitatory effect to its inhibitory action produced at low concentrations through cannabinoid CB(1) receptor activation. This “dual”, concentration-dependent effect of anandamide could be an important presynaptic modulatory mechanism in the spinal nociceptive system.”

https://www.ncbi.nlm.nih.gov/pubmed/11698030

https://www.sciencedirect.com/science/article/pii/S0014299901013097?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The nonpsychotropic cannabinoid cannabidiol modulates and directly activates alpha-1 and alpha-1-Beta glycine receptor function.

 Image result for karger

“Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of chronic pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine.

Cannabidiol is a nonpsychotropic plant constituent of Cannabis sativa.

As we hypothesized that non-CB receptor mechanisms of cannabidiol might contribute to its anti-inflammatory and neuroprotective effects, we investigated the interaction of cannabidiol with strychnine-sensitive alpha(1 )and alpha(1)beta glycine receptors by using the whole-cell patch clamp technique.

Cannabidiol showed a positive allosteric modulating effect in a low micromolar concentration range (EC(50) values: alpha(1) = 12.3 +/- 3.8 micromol/l and alpha(1)beta = 18.1 +/- 6.2 micromol/l). Direct activation of glycine receptors was observed at higher concentrations above 100 micromol/l (EC(50) values: alpha(1) = 132.4 +/- 12.3 micromol/l and alpha(1)beta = 144.3 +/- 22.7 micromol/l).

These in vitro results suggest that strychnine-sensitive glycine receptors may be a target for cannabidiol mediating some of its anti-inflammatory and neuroprotective properties.”

https://www.ncbi.nlm.nih.gov/pubmed/19204413

https://www.karger.com/Article/Abstract/201556

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Remote Ischemia Preconditioning Attenuates Blood-Spinal Cord Barrier Breakdown in Rats Undergoing Spinal Cord Ischemia Reperfusion Injury: Associated with Activation and Upregulation of CB1 and CB2 Receptors.

Related image

“Remote ischemic preconditioning (RIPC) has protective effects on spinal cord ischemia reperfusion (I/R) injury, but the potential mechanisms remain unclear. In our study, the effects and underlying mechanisms of RIPC on blood-spinal cord barrier (BSCB) breakdown following I/R injury were investigated.

RIPC attenuated the motor dysfunction, BSCB disruption and downregulation of occludin after I/R injury, which were impaired by blocking CB1 and CB2 receptors. Moreover, RIPC upregulated the elevated perivascular expression of CB1 and CB2 receptors following I/R injury.

CONCLUSIONS:

These results indicated that RIPC, through activation and upregulation of CB1 and CB2 receptors, was involved in preserving the integrity of BSCB after spinal cord I/R injury.”

https://www.ncbi.nlm.nih.gov/pubmed/29130941

https://www.karger.com/Article/FullText/484460

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

[Delta-9-tetrahydrocannabinol-cannabidiol in the treatment of spasticity in chronic spinal cord injury: a clinical experience].

:Image result for Rev Neurol.

“Spasticity in chronic spinal cord injury is a condition that can have negative repercussions on the patient’s quality of life. Its treatment is complex and sometimes the outcome is insufficient.

Cannabinoids have recently been used in multiple sclerosis to successfully treat spasticity that is refractory to other therapies.

AIM:

To quantify the clinical response of a group of patients with spastic chronic spinal cord injury to the orally administered drug delta-9-tetrahydrocannabinol-cannabidiol (Sativex ®) as medication for use in special situations.

RESULTS:

Fifteen patients took part in this study. A significant improvement was observed on three of the scales recorded: modified Ashworth scale (z = -2.97; p = 0.003), Penn spasm frequency scale (z = -2.76; p = 0.006) and Numeric Rating Scale (z = -3.21; p = 0.001).

CONCLUSIONS:

Sativex can be considered an alternative in patients with spasticity associated with chronic spinal cord injury for whom other therapeutic measures have been insufficient. Further studies need to be conducted before the use of this drug can be recommended and so as to define a complete profile of its long-term side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/28929471

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Treatment of human spasticity with delta 9-tetrahydrocannabinol.

Image result for J Clin Pharmacol.

“Spasticity is a common neurologic condition in patients with multiple sclerosis, stroke, cerebral palsy or an injured spinal cord. Animal studies suggest that THC has an inhibitory effect on polysynaptic reflexes.

Some spastic patients claim improvement after inhaling cannabis. We tested muscle tone, reflexes, strength and performed EMGs before and after double-blinded oral administration of either 10 or 5 mg THC or placebo.

10 mg THC significantly reduced spasticity by clinical measurement (P less than 0.01).

Responses varied, but benefit was seen in three of three patients with “tonic spasms.””

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The synthetic cannabinoid WIN55212-2 ameliorates traumatic spinal cord injury via inhibition of GAPDH/Siah1 in a CB2-receptor dependent manner.

Image result for brain research journal

“The essential role of GAPDH/Siah1 signaling pathway in the pathogenesis of various injurious conditions such as traumatic spinal cord injury (SCI) has been gradually recognized. However, the drugs targeting this signaling pathway are still lacking.

The endocannabinoid system, including its receptors (CB1 and CB2), act as neuroprotective and immunomodulatory modulators in SCI. WIN55212-2, an agonist for CB1 and CB2 receptors, has been demonstrated with anti-inflammatory and anti-apoptotic effects in multiple neurological diseases. Therefore, the present study aimed to investigate whether WIN55212-2 could promote functional recovery after traumatic SCI via inhibition of the GAPDH/Siah1 signaling.

In conclusion, our study indicates that, WIN55212-2 improves the functional recovery after SCI via inhibition of GAPDH/Siah1 cascades in a CB2 receptor dependent manner, indicative of its therapeutic potential for traumatic SCI or other traumatic conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/28716633

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Medicinal Uses of Marijuana and Cannabinoids

Publication Cover

“In the past two decades, there has been increasing interest in the therapeutic potential of cannabis and single cannabinoids, mainly cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC). THC and cannabis products rich in THC exert their effects mainly through the activation of cannabinoid receptors (CB1 and CB2). Since 1975, 140 controlled clinical trials using different cannabinoids or whole-plant preparations for the treatment of a large number of disorders and symptoms have been conducted. Results have led to the approval of cannabis-based medicines [dronabinol, nabilone, and the cannabis extract nabiximols (Sativex®, THC:CBD = 1:1)] as well as cannabis flowers in several countries. Controlled clinical studies provide substantial evidence for the use of cannabinoid receptor agonists in cancer chemotherapy induced nausea and vomiting, appetite loss and cachexia in cancer and HIV patients, neuropathic and chronic pain, and in spasticity in multiple sclerosis. In addition, there is also some evidence suggesting a therapeutic potential of cannabis-based medicines in other indications including Tourette syndrome, spinal cord injury, Crohn’s disease, irritable bowel syndrome, and glaucoma. In several other indications, small uncontrolled and single-case studies reporting beneficial effects are available, for example in posttraumatic stress disorder, attention deficit hyperactivity disorder, and migraine. The most common side effects of THC and cannabis-based medicines rich in THC are sedation and dizziness (in more than 10% of patients), psychological effects, and dry mouth. Tolerance to these side effects nearly always develops within a short time. Withdrawal symptoms are hardly ever a problem in the therapeutic setting. In recent years there is an increasing interest in the medical use of CBD, which exerts no intoxicating side effects and is usually well-tolerated. Preliminary data suggest promising effects in the treatment of anxiety disorders, schizophrenia, dystonia, and some forms of epilepsy. This review gives an overview on clinical studies which have been published over the past 40 years.”

http://www.tandfonline.com/doi/abs/10.1080/07352689.2016.1265360?needAccess=true&journalCode=bpts20

“Review Identifies 140 Controlled Clinical Trials Related to Cannabis”  http://blog.norml.org/2017/06/04/review-identifies-140-controlled-clinical-trials-related-to-cannabis/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol administration reduces sublesional cancellous bone loss in rats with severe spinal cord injury.

Cover image

“Patients with spinal cord injury (SCI) undergo severe loss of bone mineral below the level of lesion, and data on available treatment options after SCI is scarce.

The aim of this work was to investigate the therapeutic effect of cannabidiol (CBD), a non-psychoactive cannabis, on sublesional bone loss in a rat model of SCI.

In conclusion, CBD administration attenuated SCI-induced sublesional cancellous bone loss.”

https://www.ncbi.nlm.nih.gov/pubmed/28479140

http://www.sciencedirect.com/science/article/pii/S0014299917303230

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Delta-9-tetrahydrocannabinol shows antispastic and analgesic effects in a single case double-blind trial.

Image result for Eur Arch Psychiatry Clin Neurosci.

“A double-blind study was performed comparing 5 mg delta-9-tetrahydrocannabinol (THC) p.o., 50 mg codeine p.o., and placebo in a patient with spasticity and pain due to spinal cord injury. The three conditions were applied 18 times each in a randomized and balanced order. Delta-9-THC and codeine both had an analgesic effect in comparison with placebo. Only delta-9-THC showed a significant beneficial effect on spasticity. In the dosage of THC used no altered consciousness occurred.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous