Medicinal Uses of Marijuana and Cannabinoids

Publication Cover

“In the past two decades, there has been increasing interest in the therapeutic potential of cannabis and single cannabinoids, mainly cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC). THC and cannabis products rich in THC exert their effects mainly through the activation of cannabinoid receptors (CB1 and CB2). Since 1975, 140 controlled clinical trials using different cannabinoids or whole-plant preparations for the treatment of a large number of disorders and symptoms have been conducted. Results have led to the approval of cannabis-based medicines [dronabinol, nabilone, and the cannabis extract nabiximols (Sativex®, THC:CBD = 1:1)] as well as cannabis flowers in several countries. Controlled clinical studies provide substantial evidence for the use of cannabinoid receptor agonists in cancer chemotherapy induced nausea and vomiting, appetite loss and cachexia in cancer and HIV patients, neuropathic and chronic pain, and in spasticity in multiple sclerosis. In addition, there is also some evidence suggesting a therapeutic potential of cannabis-based medicines in other indications including Tourette syndrome, spinal cord injury, Crohn’s disease, irritable bowel syndrome, and glaucoma. In several other indications, small uncontrolled and single-case studies reporting beneficial effects are available, for example in posttraumatic stress disorder, attention deficit hyperactivity disorder, and migraine. The most common side effects of THC and cannabis-based medicines rich in THC are sedation and dizziness (in more than 10% of patients), psychological effects, and dry mouth. Tolerance to these side effects nearly always develops within a short time. Withdrawal symptoms are hardly ever a problem in the therapeutic setting. In recent years there is an increasing interest in the medical use of CBD, which exerts no intoxicating side effects and is usually well-tolerated. Preliminary data suggest promising effects in the treatment of anxiety disorders, schizophrenia, dystonia, and some forms of epilepsy. This review gives an overview on clinical studies which have been published over the past 40 years.”

http://www.tandfonline.com/doi/abs/10.1080/07352689.2016.1265360?needAccess=true&journalCode=bpts20

“Review Identifies 140 Controlled Clinical Trials Related to Cannabis”  http://blog.norml.org/2017/06/04/review-identifies-140-controlled-clinical-trials-related-to-cannabis/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Therapeutic potential of cannabinoid medicines.

Drug Testing and Analysis

“Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines.

The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology.

In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/24006213

http://onlinelibrary.wiley.com/doi/10.1002/dta.1529/abstract

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The endocannabinoid system and its therapeutic exploitation.

Image result for Nat Rev Drug Discov.

“The term ‘endocannabinoid’ – originally coined in the mid-1990s after the discovery of membrane receptors for the psychoactive principle in Cannabis, Delta9-tetrahydrocannabinol and their endogenous ligands – now indicates a whole signalling system that comprises cannabinoid receptors, endogenous ligands and enzymes for ligand biosynthesis and inactivation. This system seems to be involved in an ever-increasing number of pathological conditions. With novel products already being aimed at the pharmaceutical market little more than a decade since the discovery of cannabinoid receptors, the endocannabinoid system seems to hold even more promise for the future development of therapeutic drugs. We explore the conditions under which the potential of targeting the endocannabinoid system might be realized in the years to come.”  http://www.ncbi.nlm.nih.gov/pubmed/15340387

http://www.nature.com/nrd/journal/v3/n9/full/nrd1495.html

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits.

Image result for West Indian Med J

“Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the ‘holy grail’ of endocannabinoid research.”

http://www.ncbi.nlm.nih.gov/pubmed/23155985

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

On the application of cannabis in paediatrics and epileptology.

Abstract

“An initial report on the therapeutic application of delta 9-THC (THC) (Dronabinol, Marinol) in 8 children resp. adolescents suffering from the following conditions, is given: neurodegenerative disease, mitochondriopathy, posthypoxic state, epilepsy, posttraumatic reaction. THC effected reduced spasticity, improved dystonia, increased initiative (with low dose), increased interest in the surroundings, and anticonvulsive action. The doses ranged from 0.04 to 0.12 mg/kg body weight a day. The medication was given as an oily solution orally in 7 patients, via percutaneous gastroenterostomy tube in one patient. At higher doses disinhibition and increased restlessness were observed. In several cases treatment was discontinued and in none of them discontinuing resulted in any problems. The possibility that THC-induced effects on ion channels and transmitters may explain its therapeutic activity seen in epileptic patients is discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/15159680

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

Philosophical Transactions of the Royal Society B: Biological Sciences: 367 (1607)

“Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive ‘multi-targeting’.”  https://www.ncbi.nlm.nih.gov/pubmed/23108552

“Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities”  http://rstb.royalsocietypublishing.org/content/367/1607/3353.long

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Therapeutic aspects of cannabis and cannabinoids

The British Journal of Psychiatry

“HISTORY OF THERAPEUTIC USE

The first formal report of cannabis as a medicine appeared in China nearly 5000 years ago when it was recommended for malaria, constipation, rheumatic pains and childbirth and, mixed with wine, as a surgical analgesic. There are subsequent records of its use throughout Asia, the Middle East, Southern Africa and South America. Accounts by Pliny, Dioscorides and Galen remained influential in European medicine for 16 centuries.”

“It was not until the 19th century that cannabis became a mainstream medicine in Britain. W. B. O’Shaughnessy, an Irish scientist and physician, observed its use in India as an analgesic, anticonvulsant, anti-spasmodic, anti-emetic and hypnotic. After toxicity experiments on goats and dogs, he gave it to patients and was impressed with its muscle-relaxant, anticonvulsant and analgesic properties, and recorded its use-fulness as an anti-emetic.”

“After these observations were published in 1842, medicinal use of cannabis expanded rapidly. It soon became available ‘over the counter’ in pharmacies and by 1854 it had found its way into the United States Dispensatory. The American market became flooded with dozens of cannabis-containing home remedies.”

“Cannabis was outlawed in 1928 by ratification of the 1925 Geneva Convention on the manufacture, sale and movement of dangerous drugs. Prescription remained possible until final prohibition under the 1971 Misuse of Drugs Act, against the advice of the Advisory Committee on Drug Dependence.”

“In the USA, medical use was effectively ruled out by the Marijuana Tax Act 1937. This ruling has been under almost constant legal challenge and many special dispensations were made between 1976 and 1992 for individuals to receive ‘compassionate reefers’. Although this loophole has been closed, a 1996 California state law permits cultivation or consumption of cannabis for medical purposes, if a doctor provides a written endorsement. Similar arrangements apply in Italy and Canberra, Australia.”

“Results and Conclusions Cannabis and some cannabinoids are effective anti-emetics and analgesics and reduce intra-ocular pressure. There is evidence of symptom relief and improved well-being in selected neurological conditions, AIDS and certain cancers. Cannabinoids may reduce anxiety and improve sleep. Anticonvulsant activity requires clarification. Other properties identified by basic research await evaluation. Standard treatments for many relevant disorders are unsatisfactory. Cannabis is safe in overdose but often produces unwanted effects, typically sedation, intoxication, clumsiness, dizziness, dry mouth, lowered blood pressure or increased heart rate. The discovery of specific receptors and natural ligands may lead to drug developments. Research is needed to optimise dose and route of administration, quantify therapeutic and adverse effects, and examine interactions.”

http://bjp.rcpsych.org/content/178/2/107.long

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The therapeutic potential of novel cannabinoid receptors.

Cover image

“Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.”  http://www.ncbi.nlm.nih.gov/pubmed/19248809

“The therapeutic potential of novel cannabinoid receptors”  http://www.sciencedirect.com/science/article/pii/S0163725809000266

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Endocannabinoid System and the Brain.

Abstract

“The psychoactive constituent in cannabis, Δ(9)-tetrahydrocannabinol (THC), was isolated in the mid-1960s, but the cannabinoid receptors, CB1 and CB2, and the major endogenous cannabinoids (anandamide and 2-arachidonoyl glycerol) were identified only 20 to 25 years later. The cannabinoid system affects both central nervous system (CNS) and peripheral processes. In this review, we have tried to summarize research-with an emphasis on recent publications-on the actions of the endocannabinoid system on anxiety, depression, neurogenesis, reward, cognition, learning, and memory. The effects are at times biphasic-lower doses causing effects opposite to those seen at high doses. Recently, numerous endocannabinoid-like compounds have been identified in the brain. Only a few have been investigated for their CNS activity, and future investigations on their action may throw light on a wide spectrum of brain functions. Expected final online publication date for the Annual Review of Psychology Volume 64 is November 30, 2012. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.”

http://www.ncbi.nlm.nih.gov/pubmed/22804774

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous