Anticonvulsive Properties of Cannabidiol in a Model of Generalized Seizure Are Transient Receptor Potential Vanilloid 1 Dependent

View details for Cannabis and Cannabinoid Research cover image“Highly purified cannabidiol (CBD) (approved as Epidiolex® in the United States) has demonstrated efficacy with an acceptable safety profile in patients with Lennox-Gastaut or Dravet syndrome in four randomized controlled trials. CBD possesses affinity for many target classes with functional effects relevant to the pathophysiology of many disease types, including epilepsy.

Although the mechanism of action of CBD underlying the reduction of seizures in humans is unknown, transient receptor potential vanilloid 1 (TRPV1) represents a plausible target because (1) CBD activates and then desensitizes TRPV1, (2) TRPV1 is overexpressed in models of temporal lobe epilepsy and patients with epilepsy, (3) and TRPV1 modulates neuronal excitability.

Methods: To investigate a potential role of TRPV1 in the anticonvulsive effects of CBD, the effect of CBD on seizure threshold was assessed using a mouse maximal electroshock threshold model of generalized seizure in TRPV1 knockout and wildtype mice. The dose dependence of the CBD effect was determined and compared with that of the positive comparator diazepam and vehicle.

Results: At 50 and 100 mg/kg, CBD significantly (p<0.0001) increased seizure threshold in wildtype mice compared with TRPV1 knockout and vehicle controls. This effect was observed only at 100 mg/kg in TRPV1 knockout mice compared with knockout vehicle mice, in which gene deletion partially attenuated the CBD-increased seizure threshold. The effect of high-dose CBD in wildtype mice was nevertheless significantly different from vehicle-treated TRPV1 knockout mice (p<0.0001). Bioanalysis confirmed that genotype-specific differential brain exposure to CBD was not responsible for the observed effect on seizure threshold.

Conclusion: These data strongly implicate TRPV1 in the potential mechanisms of action for the anticonvulsive effects of CBD. The partial inhibition of the anticonvulsive effect of high-dose CBD in TRPV1 knockout mice may indicate the involvement of targets other than TRPV1. Further characterization of TRPV1 in the anticonvulsive effect of CBD in validated models of seizure is warranted, as is pharmacological investigation of the molecular interaction between CBD and TRPV1.”

https://pubmed.ncbi.nlm.nih.gov/32656346/

https://www.liebertpub.com/doi/10.1089/can.2019.0028

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Efficacy and Tolerance of Synthetic Cannabidiol for Treatment of Drug Resistant Epilepsy.

Image result for frontiers in neurology“Controlled and open label trials have demonstrated efficacy of cannabidiol for certain epileptic encephalopathies.

However, plant derived cannabidiol products have been used almost exclusively. Efficacy of synthetically derived cannabidiol has not been studied before.

The objective of this study was to evaluate tolerability and efficacy of synthetic cannabidiol in patients with pharmacoresistant epilepsy.

Efficacy and tolerance in our study of synthetic CBD treatment in pharmacoresistant epilepsy is similar to open label studies using plant derived CBD.

Regarding economic and ecological aspects, synthetic cannabidiol might be a reasonable alternative to plant derived cannabidiol.”

https://www.ncbi.nlm.nih.gov/pubmed/31920934

“Over the last decade, the therapeutic use of cannabidiol (CBD) in intractable epilepsies has increased considerably. Its anticonvulsant properties have been shown in several animal models for acute and chronic epilepsy.

Recent randomized, controlled trials have demonstrated that CBD is superior to placebo in seizure reduction in children with Dravet syndrome and patients with Lennox-Gastaut syndrome. In addition, open label studies indicate that cannabidiol has anticonvulsive properties in a broader range of epilepsy syndromes and etiologies.

In summary, the results of this study provide class III evidence of efficacy and safety of synthetic cannabidiol in children and adults with pharmacoresistant epilepsy. Additional studies investigating efficacy and tolerance of synthetic CBD in larger cohorts are needed.”

https://www.frontiersin.org/articles/10.3389/fneur.2019.01313/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Medical Cannabis: A plurimillennial history of an evergreen.

 Journal of Cellular Physiology banner“The history of Cannabis goes along that of humankind, as speculated based on geographical and evolutionary models together with historic data collected to date. Its medical use is several thousand years old, as attested both by archeobotanical evidence of Cannabis remains and written records found in ancient texts from the sacred Vedic foundational texts of Ayurvedic medicine (about 800 before current era [BCE]) to the first known Pharmacopoea, the Chinese “Shen Nung Pen Ts’ao Ching” (1 century BCE). In this paper, we retrace the history of Cannabis traveling through the key stages of its diffusion among the most important ancient cultures up to our days, when we are facing a renaissance of its medical employment. We report through the centuries evidence of its use in numerous pathologic conditions especially for its anti-inflammatory, antiseptic, and anticonvulsing properties that support the requirement to direct our present research efforts into the definitive understanding of its efficacy.”

https://www.ncbi.nlm.nih.gov/pubmed/30417354

https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.27725

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus.

European Journal of Medicinal Chemistry

“Cannabaceae plants Cannabis sativa L. and Humulus lupulus L. are rich in terpenes – both are typically comprised of terpenes as up to 3-5% of the dry-mass of the female inflorescence.

Terpenes of cannabis and hops are typically simple mono- and sesquiterpenes derived from two and three isoprene units, respectively. Some terpenes are relatively well known for their potential in biomedicine and have been used in traditional medicine for centuries, while others are yet to be studied in detail.

The current, comprehensive review presents terpenes found in cannabis and hops. Terpenes’ medicinal properties are supported by numerous in vitro, animal and clinical trials and show anti-inflammatory, antioxidant, analgesic, anticonvulsive, antidepressant, anxiolytic, anticancer, antitumor, neuroprotective, anti-mutagenic, anti-allergic, antibiotic and anti-diabetic attributes, among others.

Because of the very low toxicity, these terpenes are already widely used as food additives and in cosmetic products. Thus, they have been proven safe and well-tolerated.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anticonvulsive effects of endocannabinoids; an investigation to determine the role of regulatory components of endocannabinoid metabolism in the Pentylenetetrazol induced tonic- clonic seizures.

Metabolic Brain Disease

“2-Arachidonoylglycerol (2-AG) and anandamide are two major endocannabinoids produced, released and eliminated by metabolic pathways.

Anticonvulsive effect of 2-AG and CB1 receptor is well-established. Herein, we designed to investigate the anticonvulsive influence of key components of the 2-AG and anandamide metabolism.

It seems extracellular accumulation of 2-AG or anandamide has anticonvulsive effect through the CB1 receptor, while intracellular anandamide accumulation is proconvulsive through TRPV1.”

https://www.ncbi.nlm.nih.gov/pubmed/29504066

https://link.springer.com/article/10.1007%2Fs11011-018-0195-5

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol reduced frequency of convulsive seizures in drug resistant Dravet syndrome.

BMJ Journals

“Study design

Design: Multinational double-blinded placebo-controlled trial. Patients randomised in 1:1 ratio to receive cannabidiol or placebo, in addition to stable antiepileptic treatment regime.

Study question

Setting: Twenty-three centres in Europe and USA.

 Patients: Patients aged 2 years to 18 years with established diagnosis of Dravet syndrome having at least four convulsive seizures during the 28-day baseline period despite regular antiepileptic medication.

Intervention: Adjunctive cannabidiol or placebo oral solution at 20 mg per kilogram of body weight per day.

Primary outcome: Percentage change in median frequency of convulsive seizures per month.

Follow-up period: Outcome measured over a 14-week treatment period in comparison to a 4-week baseline period.

Patient follow-up: One hundred and eight (90%) completed the trial: 85% (52/61) in the cannabidiol group and …”

http://ep.bmj.com/content/early/2017/09/22/archdischild-2017-313700

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

High dosage of cannabidiol (CBD) alleviates pentylenetetrazole-induced epilepsy in rats by exerting an anticonvulsive effect.

“The study was designed to investigate the effect of various concentrations of cannabidiol (CBD) in rats with chronic epilepsy.

The results revealed a significant decrease in the daily average grade of epileptic seizures on treatment with CBD (50 mg/kg).

The neuronal loss and astrocyte hyperplasia in the hippocampal area were also decreased.

CBD treatment did not affect the expression of iNOS in the hippocampus; however, the expression of NR1 was decreased significantly.

Thus, CBD administration inhibited the effect of pentylenetetrazole in rats, decreased the astrocytic hyperplasia, decreased neuronal damage in the hippocampus caused by seizures and selectively reduced the expression of the NR1 subunit of NMDA.

Therefore, CBD exhibits an anticonvulsive effect in the rats with chronic epilepsy.”

http://www.ncbi.nlm.nih.gov/pubmed/26309534

“Epilepsy is one of the most common diseases of the brain, affecting at least 50 million people globally… Despite development of a number of new antiepileptic drugs, epilepsy could not be significantly reduced and is a challenge to the clinicians… Many plants, known for their anticonvulsant activity are subjected to phytochemical and pharmacological studies. Cannabidiol (CBD) a constituent of the hemp seed exhibits potent anticonvulsant activity…  The CBD possess anticonvulsive, anti-epileptic, and antimicrobial properties… The present study was performed to examine the anticonvulsive effects of CBD in pentylenetetrazole-induced chronic epilepsy rat models… The present study demonstrates that CBD protects against pentylenetetrazole-induced chronic seizures, decreases astrocytic hyperplasia, decreases neuronal cell loss and selectively suppresses NMDA1 receptor in the hippocampus… Therefore, CBD exhibits an anticonvulsive effect in the rats with chronic epilepsy.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537971/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids and Epilepsy.

“Cannabis has been used for centuries to treat seizures.

Recent anecdotal reports, accumulating animal model data, and mechanistic insights have raised interest in cannabis-based antiepileptic therapies.

In this study, we review current understanding of the endocannabinoid system, characterize the pro- and anticonvulsive effects of cannabinoids [e.g., Δ9-tetrahydrocannabinol and cannabidiol (CBD)], and highlight scientific evidence from pre-clinical and clinical trials of cannabinoids in epilepsy.

These studies suggest that CBD avoids the psychoactive effects of the endocannabinoid system to provide a well-tolerated, promising therapeutic for the treatment of seizures, while whole-plant cannabis can both contribute to and reduce seizures.

Finally, we discuss results from a new multicenter, open-label study using CBD in a population with treatment-resistant epilepsy. In all, we seek to evaluate our current understanding of cannabinoids in epilepsy and guide future basic science and clinical studies.”

http://www.ncbi.nlm.nih.gov/pubmed/26282273

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol in medicine: a review of its therapeutic potential in CNS disorders.

“Cannabidiol (CBD) is the main non-psychotropic component of the glandular hairs of Cannabis sativa.

It displays a plethora of actions including anticonvulsive, sedative, hypnotic, antipsychotic, antiinflammatory and neuroprotective properties.

However, it is well established that CBD produces its biological effects without exerting significant intrinsic activity upon cannabinoid receptors.

For this reason, CBD lacks the unwanted psychotropic effects characteristic of marijuana derivatives, so representing one of the bioactive constituents of Cannabis sativa with the highest potential for therapeutic use.

The present review reports the pharmacological profile of CBD and summarizes results from preclinical and clinical studies utilizing CBD, alone or in combination with other phytocannabinoids, for the treatment of a number of CNS disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/18844286

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Inhibition of monoacylglycerol lipase mediates a cannabinoid 1-receptor dependent delay of kindling progression in mice.

“Endocannabinoids, including 2-arachidonoylglycerol (2-AG), activate presynaptic cannabinoid type 1 receptors (CB1R) on inhibitory and excitatory neurons, resulting in a decreased release of neurotransmitters.

Event-specific activation of the endocannabinoid system by inhibition of the endocannabinoid degrading enzymes may offer a promising strategy to selectively activate CB1Rs at the site of excessive neuronal activation with the overall goal to prevent the development epilepsy.

The aim of this study was to investigate the impact of monoacylglycerol lipase (MAGL) inhibition on the development and progression of epileptic seizures in the kindling model of temporal lobe epilepsy.

In conclusion, the data demonstrate that indirect CB1R agonism delays the development of generalized epileptic seizures, but has no relevant acute anticonvulsive effects.

Furthermore, we confirmed that the effects of JZL184 on kindling progression are CB1R mediated.

Thus, the data indicate that the endocannabinoid 2-AG might be a promising target for an anti-epileptogenic approach.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous