The effects of delta-9-tetrahydrocannabinol on Krüppel-like factor-4 expression, redox homeostasis, and inflammation in the kidney of diabetic rat.

Publication cover image

“Diabetes mellitus is a complex, multifactorial disorder that is attributed to pancreatic β cell dysfunction. Pancreatic β cell dysfunction results in declining utilization of glucose by peripheral tissues as kidney and it leads to nephropathy. Excessive production and accumulation of free radicals and incapable antioxidant defense system lead to impaired redox status. Macromolecular damage may occur due to impaired redox status and also immune imbalance.

Δ9-Tetrahydrocannabinol (THC) is the main active ingredient in cannabis. THC acts as an immunomodulator and an antioxidant agent.

Our aim was to evaluate the effects of THC in the diabetic kidney.

According to our data, THC has ameliorative effects on the impaired redox status of diabetic kidney and also it acts as an immunomodulator. Therefore, THC might be used as a therapeutic agent for diabetic kidneys but its usage in the healthy kidney may show adverse effects.”

https://www.ncbi.nlm.nih.gov/pubmed/31081965

https://onlinelibrary.wiley.com/doi/abs/10.1002/jcb.28903

“Marijuana Doesn’t Seem to Harm the Kidneys” https://www.webmd.com/mental-health/addiction/news/20180306/marijuana-doesnt-seem-to-harm-the-kidneys

“Pot Won’t Harm Healthy Young People’s Kidneys, Study Suggests”   https://www.medicinenet.com/script/main/art.asp?articlekey=206375

“Marijuana doesn’t appear to harm kidneys”   https://www.hsph.harvard.edu/news/hsph-in-the-news/marijuana-kidneys/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Use of Cannabidiol in the Treatment of Epilepsy: Efficacy and Security in Clinical Trials.

molecules-logo

“Cannabidiol (CBD) is one of the cannabinoids with non-psychotropic action, extracted from Cannabis sativa. CBD is a terpenophenol and it has received a great scientific interest thanks to its medical applications. This compound showed efficacy as anti-seizure, antipsychotic, neuroprotective, antidepressant and anxiolytic. The neuroprotective activity appears linked to its excellent anti-inflammatory and antioxidant properties. The purpose of this paper is to evaluate the use of CBD, in addition to common anti-epileptic drugs, in the severe treatment-resistant epilepsy through an overview of recent literature and clinical trials aimed to study the effects of the CBD treatment in different forms of epilepsy. The results of scientific studies obtained so far the use of CBD in clinical applications could represent hope for patients who are resistant to all conventional anti-epileptic drugs.”

https://www.ncbi.nlm.nih.gov/pubmed/31013866

https://www.mdpi.com/1420-3049/24/8/1459

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid receptor 2 activation mitigates lipopolysaccharide-induced neuroinflammation and sickness behavior in mice.

 Image result for psychopharmacology journal“Cannabinoid receptor 2 (CB2R) signaling in the brain is associated with the pathophysiology of depression.

Sickness behavior, characterized by lessened mobility, social interaction, and depressive behavior, is linked with neuroinflammation, oxidative stress, and immune system.

The present study was aimed at evaluating 1-phenylisatin (PI), a CB2R agonist, in sickness behavior.

Our data propose that acute and long-term activation of CB2R might prevent neuroinflammation and oxidative stress-associated sickness behavior.”

https://www.ncbi.nlm.nih.gov/pubmed/30666359

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer.

 Related image“In the last decades, a lot of attention has been paid to the compounds present in medicinal Cannabis sativa L., such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and their effects on inflammation and cancer-related pain.

The National Cancer Institute (NCI) currently recognizes medicinal C. sativa as an effective treatment for providing relief in a number of symptoms associated with cancer, including pain, loss of appetite, nausea and vomiting, and anxiety.

Several studies have described CBD as a multitarget molecule, acting as an adaptogen, and as a modulator, in different ways, depending on the type and location of disequilibrium both in the brain and in the body, mainly interacting with specific receptor proteins CB1 and CB2.

CBD is present in both medicinal and fibre-type C. sativa plants, but, unlike Δ9-THC, it is completely nonpsychoactive. Fibre-type C. sativa (hemp) differs from medicinal C. sativa, since it contains only few levels of Δ9-THC and high levels of CBD and related nonpsychoactive compounds.

In recent years, a number of preclinical researches have been focused on the role of CBD as an anticancer molecule, suggesting CBD (and CBD-like molecules present in the hemp extract) as a possible candidate for future clinical trials.

CBD has been found to possess antioxidant activity in many studies, thus suggesting a possible role in the prevention of both neurodegenerative and cardiovascular diseases. In animal models, CBD has been shown to inhibit the progression of several cancer types. Moreover, it has been found that coadministration of CBD and Δ9-THC, followed by radiation therapy, causes an increase of autophagy and apoptosis in cancer cells. In addition, CBD is able to inhibit cell proliferation and to increase apoptosis in different types of cancer models.

These activities seem to involve also alternative pathways, such as the interactions with TRPV and GRP55 receptor complexes. Moreover, the finding that the acidic precursor of CBD (cannabidiolic acid, CBDA) is able to inhibit the migration of breast cancer cells and to downregulate the proto-oncogene c-fos and the cyclooxygenase-2 (COX-2) highlights the possibility that CBDA might act on a common pathway of inflammation and cancer mechanisms, which might be responsible for its anticancer activity.

In the light of all these findings, in this review we explore the effects and the molecular mechanisms of CBD on inflammation and cancer processes, highlighting also the role of minor cannabinoids and noncannabinoids constituents of Δ9-THC deprived hemp.”

https://www.ncbi.nlm.nih.gov/pubmed/30627539

https://www.hindawi.com/journals/bmri/2018/1691428/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The protective effects of β-caryophyllene on LPS-induced primary microglia M1/M2 imbalance: A mechanistic evaluation.

Life Sciences

“Neuroinflammation is observed as a routine characterization of neurodegenerative disorders such as dementia, multiple sclerosis (MS) and Alzheimer’s diseases (AD). Scientific evidence propounds both of the neuromodulatory and immunomodulatory effects of CB2 in the immune system. β-Caryophyllene (BCP) is a dietary selective CB2 agonist, which deserves the anti-inflammatory and antioxidant effects at both low and high doses through activation of the CB2 receptor.

METHODS:

In this study, we investigated the protective effects of a broad range concentration of BCP against LPS-induced primary microglia cells inflammation and M1/M2 imbalance and identifying the portion of the involvement of related signaling pathways on BCP effects using pharmacological antagonists of CB2, PPAR-γ, and sphingomyelinase (SMase).

KEY FINDINGS:

The protective effects of BCP on LPS-induced microglia imbalance is provided by the M2 healing phenotype of microglia, releasing the anti-inflammatory (IL-10, Arg-1, and urea) and anti-oxidant (GSH) parameters and reducing the inflammatory (IL-1β, TNF-α, PGE2, iNOS and NO) and oxidative (ROS) biomarkers. Moreover, we showed that BCP exerts its effects through CB2receptors which overproduction of ceramides by SMase at middle to higher concentrations of BCP reduce the protective activity of BCP and results in the activation of the PPAR-γ pathway.

SIGNIFICANCE:

In conclusion, the low concentration of BCP has higher selective anti-inflammatory effects rather than high levels. On this occasion, BCP by modulating the microglia is able to have potential therapeutic effects in neuro-inflammation conditions and microglia cells such as MS and AD.”

https://www.ncbi.nlm.nih.gov/pubmed/30620895

https://www.sciencedirect.com/science/article/abs/pii/S0024320518308610?via%3Dihub

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”  https://www.ncbi.nlm.nih.gov/pubmed/18574142

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Blood-brain barrier disturbances in diabetes-associated dementia: Therapeutic potential for cannabinoids.

Pharmacological Research

“Type-2 diabetes (T2D) increases the risk of dementia by ˜5-fold, however the mechanisms by which T2D increases dementia risk remain unclear. Evidence suggests that the heightened inflammation and oxidative stress in T2D may lead to disruption of the blood-brain barrier (BBB), which precedes premature cognitive decline. Studies show that vascular-targeted anti-inflammatory treatments protect the BBB by attenuating neuroinflammation, and in some studies attenuate cognitive decline. Yet, this potential pathway is understudied in T2D-associated cognitive impairment.

In recent years, therapeutic potential of cannabinoids has gained much interest. The two major cannabinoids, cannabidiol and tetrahydrocannabinol, exert anti-inflammatory and vascular protective effects, however few studies report their potential for reversing BBB dysfunction, particularly in T2D. Therefore, in this review, we summarize the current findings on the role of BBB dysfunction in T2D-associated dementia and consider the potential therapeutic use of cannabinoids as a protectant of cerebrovascular BBB protection.”

https://www.ncbi.nlm.nih.gov/pubmed/30616019

https://www.sciencedirect.com/science/article/abs/pii/S1043661818314634?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Chromatographic Analyses, In Vitro Biological Activities, and Cytotoxicity of Cannabis sativa L. Essential Oil: A Multidisciplinary Study.

molecules-logo

“Due to renewed interest in the cultivation and production of Italian Cannabis sativa L., we proposed a multi-methodological approach to explore chemically and biologically both the essential oil and the aromatic water of this plant. We reported the chemical composition in terms of cannabinoid content, volatile component, phenolic and flavonoid pattern, and color characteristics. Then, we demonstrated the ethnopharmacological relevance of this plant cultivated in Italy as a source of antioxidant compounds toward a large panel of enzymes (pancreatic lipase, α-amylase, α-glucosidase, and cholinesterases) and selected clinically relevant, multidrug-sensible, and multidrug-resistant microbial strains (Staphylococcus aureusHelicobacter pyloriCandida, and Malassezia spp.), evaluating the cytotoxic effects against normal and malignant cell lines. Preliminary in vivo cytotoxicity was also performed on Galleria mellonella larvae. The results corroborate the use of this natural product as a rich source of important biologically active molecules with particular emphasis on the role exerted by naringenin, one of the most important secondary metabolites.”

https://www.ncbi.nlm.nih.gov/pubmed/30544765

https://www.mdpi.com/1420-3049/23/12/3266

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Beta-caryophyllene alleviates diet-induced neurobehavioral changes in rats: The role of CB2 and PPAR-γ receptors.

Biomedicine & Pharmacotherapy

“Insulin resistance (IR) and obesity predispose diseases such as diabetes, cardiovascular and neurodegenerative disorders.

Beta-caryophyllene (BCP), a natural sesquiterpene, exerts neuroprotective, anxiolytic and antidepressant effects via its selective agonism to cannabinoid receptor 2 (CB2R). BCP was shown to have an anti-diabetic effect, however, the implication of CB2R is yet to be elucidated. A link between CB2R agonism and PPAR-γ activation has been discussed, but the exact mechanism is not well-defined.

This study was designed to examine the role of BCP in improving diet-induced metabolic (insulin resistance), neurobehavioral (anxiety, depression and memory deficit), and neurochemical (oxidative, inflammatory and neurotrophic factor) alterations in the prefrontal cortex of obese rats’ brain. The involvement of CB2R and/or PPAR-γ dependent activity was also investigated.

KEY RESULTS:

Beta-caryophyllene alleviated HFFD-induced IR, oxidative-stress, neuroinflammation and behavioral changes. The anxiolytic, anti-oxidant and anti-inflammatory effects of BCP were mediated by both PPAR-γ and CB2R. The effects of BCP on glycemic parameters seem to be CB2R-dependent with the non-significant role of PPAR-γ. Furthermore, BCP-evoked antidepressant and memory improvement are likely mediated only via CB2R, mainly by upregulation of PGC-1α and BDNF.

CONCLUSION:

This study suggests the potential effect of BCP in treating HFFD-induced metabolic and neurobehavioral alterations. BCP seems to activate PPAR-γ in a ligand-independent manner, via upregulation and activation of PGC-1α. The BCP activation of PPAR–γ seems to be CB2R-dependent.”

https://www.ncbi.nlm.nih.gov/pubmed/30469079

https://www.sciencedirect.com/science/article/pii/S0753332218370033?via%3Dihub

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”  https://www.ncbi.nlm.nih.gov/pubmed/18574142

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid receptor agonists reduce the short-term mitochondrial dysfunction and oxidative stress linked to excitotoxicity in the rat brain.

Neuroscience

“The endocannabinoid system (ECS) is involved in a considerable number of physiological processes in the Central Nervous System.

Recently, a modulatory role of cannabinoid receptors (CBr) and CBr agonists on the reduction of the N-methyl-d-aspartate receptor (NMDAr) activation has been demonstrated. Quinolinic acid (QUIN), an endogenous analog of glutamate and excitotoxic metabolite produced in the kynurenine pathway (KP), selectively activates NMDAr and has been shown to participate in different neurodegenerative disorders.

Since the early pattern of toxicity exerted by this metabolite is relevant to explain the extent of damage that it can produce in the brain, in this work we investigated the effects of the synthetic CBr agonist WIN 55,212-2 (WIN) and other agonists (anandamide or AEA, and CP 55,940 or CP) on early markers of QUIN-induced toxicity in rat striatal cultured cells and rat brain synaptosomes.

WIN, AEA and CP exerted protective effects on the QUIN-induced loss of cell viability. WIN also preserved the immunofluorescent signals for neurons and CBr labeling that were decreased by QUIN. The QUIN-induced early mitochondrial dysfunction, lipid peroxidation and reactive oxygen species (ROS) formation were also partially or completely prevented by WIN pretreatment, but not when this CBr agonist was added simultaneously with QUIN to brain synaptosomes.

These findings support a neuroprotective and modulatory role of cannabinoids in the early toxic events elicited by agents inducing excitotoxic processes.”

https://www.ncbi.nlm.nih.gov/pubmed/25446347

https://www.sciencedirect.com/science/article/abs/pii/S0306452214009737?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The protective effects of Δ9 -tetrahydrocannabinol against inflammation and oxidative stress in rat liver with fructose-induced hyperinsulinemia.

Journal of Pharmacy and Pharmacology banner

“A large amount of fructose is metabolized in the liver and causes hepatic functional damage. Δ9 -tetrahydrocannabinol (THC) is known as a therapeutic agent for clinical and experimental applications.

 

The study aims to investigate the effects of THC treatment on inflammation, lipid profiles and oxidative stress in rat liver with hyperinsulinemia.

 

According to the result, long-term and low-dose THC administration may reduce hyperinsulinemia and inflammation in rats to some extent.”

 

https://www.ncbi.nlm.nih.gov/pubmed/30427077

https://onlinelibrary.wiley.com/doi/abs/10.1111/jphp.13042

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous