Reduced urinary opioid levels from pain management patients associated with marijuana use

Future Medicine Logo“Aim: Marijuana use has been postulated to modulate opioid use, dependence and withdrawal. Broad target drug testing results provide a unique perspective to identify any potential interaction between marijuana use and opioid use.

Materials & methods: Using a dataset of approximately 800,000 urine drug test results collected from pain management patients of a time from of multiple years, creatinine corrected opioid levels were evaluated to determine if the presence of the primary marijuana marker 11-nor-carboxy-tetrahydrocannabinol (THC-COOH) was associated with statistical differences in excreted opioid concentrations.

Results & conclusion: For each of the opioids investigated (codeine, morphine, hydrocodone, hydromorphone, oxycodone, oxymorphone, fentanyl and buprenorphine), marijuana use was associated with statistically significant lower urinary opiate levels than in samples without indicators of marijuana use.”

https://www.futuremedicine.com/doi/10.2217/pmt-2019-0017

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Endocannabinoid modulation of inflammatory hyperalgesia in the IFN-α mouse model of depression.

Brain, Behavior, and Immunity“Depression is a well-recognised effect of long-term treatment with interferon-alpha (IFN-α), a widely used treatment for chronic viral hepatitis and malignancy. In addition to the emotional disturbances, high incidences of painful symptoms such as headache and joint pain have also been reported following IFN-α treatment.

The endocannabinoid system plays an important role in emotional and nociceptive processing, however it is unknown whether repeated IFN-α administration induces alterations in this system.

The present study investigated nociceptive responding in the IFN-α-induced mouse model of depression and associated changes in the endocannabinoid system. Furthermore, the effects of modulating peripheral endocannabinoid tone on inflammatory pain-related behaviour in the IFN-α model was examined.

In summary, increasing peripheral endocannabinoid tone attenuates inflammatory hyperalgesia induced following repeated IFN-α administration. These data provide support for the endocannabinoid system in mediating and modulating heightened pain responding associated with IFNα-induced depression.”

https://www.ncbi.nlm.nih.gov/pubmed/31505257

“Inflammatory hyperalgesia is associated with altered endocannabinoid levels. Enhancing peripheral endocannabinoid tone attenuates IFN-α related hyperalgesia.”

https://www.sciencedirect.com/science/article/pii/S0889159119306063?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The effects of cannabis, cannabinoids, and their administration routes on pain control efficacy and safety: A systematic review and network meta-analysis.

“To determine the effects of cannabis, cannabinoids, and their administration routes on pain and adverse euphoria events.

Randomized controlled trials investigating the effects of cannabis or cannabinoids on pain reduction.

RESULTS:

A total of 25 studies involving 2270 patients were included. We found that delta-9-tetrahydrocannabinol/cannabidiol (THC/CBD) (oromucosal route), THC (oromucosal route), and standardized dried cannabis (with THC; SCT; inhalation route) could reduce neuropathic pain score (SMD -0.41, 95% CI -0.7 to -0.1; -0.61, 95% CI -1.2 to -0.02; and -0.77, 95% CI -1.4 to -0.2; respectively). For nociceptive pain, only standardized cannabis extract (with THC; SCET) via oral route could reduce pain score (SMD -1.8, 95% C; -2.4 to -1.2). In cancer pain, THC/CBD via oromucosal route and THC via oral or oromucosal route could reduce pain score (SMD -0.7, 95% CI -1.2 to -0.2; and -2.1, 95% CI -2.8 to -1.4; respectively). No study was observed for THC/CBD via oral route or inhalation or THC via inhalation for cancer and nociceptive pain, SCET via oromucosal route or inhalation for neuropathic and cancer pain, THC via oromucosal route for nociceptive pain, and SCT via oromucosal or oral route for neuropathic, cancer, and nociceptive pain. Statistically significant increased risks of euphoria were observed in THC/CBD (oromucosal), THC (oromucosal), and SCT (inhalation).

CONCLUSION:

The use of cannabis and cannabinoids via certain administration routes could reduce different types of pain. Product developers could consider our findings as part of their product design so that the effective route of cannabis and cannabinoids for pain control can be achieved.”

https://www.ncbi.nlm.nih.gov/pubmed/31495691

https://www.japha.org/article/S1544-3191(19)30353-X/fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

[Dronabinol in geriatric pain and palliative care patients : A retrospective evaluation of statutory-health-insurance-covered outpatient medical treatment].

 

“Geriatric patients often suffer from a long history of pain and have a limited life expectancy.

Cannabinoid receptor agonists like dronabinol may be an effective, low-risk treatment option for geriatric patients with chronic pain.

OBJECTIVES:

The effectiveness and side effects of dronabinol therapy in geriatric patients are analyzed. The effects of the approval requirement are presented.

RESULTS:

By using dronabinol, 21 of the 40 geriatric patients (52.5%) achieved pain relief of more than 30%, 10% of the patients of more than 50%. On average, about four symptoms or side effects related to previous treatment were positively influenced. 26% of patients reported side effects. The rejection rates on the part of the health insurances were 38.7% (group A) and 10.3% (group B).

CONCLUSIONS:

This study is one of the few analyses of the use of Dronabinol in geriatric patients. We show that cannabis-based drugs (in this case dronabinol) are an effective, low-risk treatment option that should be considered early in therapy. Regarding the indication spectrum, further clinical studies and an approval-free test phase are necessary.”

https://www.ncbi.nlm.nih.gov/pubmed/31473816

https://link.springer.com/article/10.1007%2Fs00482-019-00408-1

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Opioid-enhancing antinociceptive effects of delta-9-tetrahydrocannabinol and amitriptyline in rhesus macaques.

Cover image for Experimental and Clinical Psychopharmacology“Cannabinoids can enhance the antinociceptive effects of opioids in a synergistic manner, potentially reducing the analgesic dosage of opioids and improving pain therapy. This strategy has also been used as a rationale to combine certain antidepressants and opioids.

In this experiment, opioid-induced thermal antinociception was assessed in rhesus macaques using a warm-water tail-withdrawal procedure with 3 water temperatures (40, 50, and 55 °C). In general, the acute antinociceptive effects of intramuscular (i.m.) cumulative doses of heroin were studied alone or in combination with i.m. (-)-trans-delta-9-tetrahydrocannabinol (THC), cannabinol (CBN), or the tricyclic antidepressant amitriptyline.

A nonantinociceptive dose of THC (1 mg/kg) shifted the ED50 for the heroin dose-effect curve 3.6-fold leftward at 50 °C and 1.9-fold leftward at 55 °C compared with heroin alone. When the cannabinoid type-1 receptor (CB1R) antagonist, rimonabant, was administered prior to the most effective THC-heroin combination, rimonabant blocked the THC enhancement of heroin antinociception. When CBN (1-3.2 mg/kg) was administered prior to heroin, or 1 mg/kg of CBN was administered prior to a combination of 0.32 mg/kg of THC and heroin, no shifts were evident in the heroin dose-effect curves at either temperature.

However, similar to THC, amitriptyline (0.32-1 mg/kg) administered prior to heroin significantly shifted the heroin dose-effect curve leftward. Heroin produced both dose- and temperature-dependent thermal antinociception in nonhuman primates and THC produced opioid-enhancing effects in a CB1R-dependent manner. These effects of THC were not shared by cannabinol, but were quantitatively similar to that of amitriptyline.”

https://www.ncbi.nlm.nih.gov/pubmed/31464475

https://psycnet.apa.org/doiLanding?doi=10.1037%2Fpha0000313

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Therapeutic potential of cannabinoid receptor 2 in the treatment of diabetes mellitus and its complications.

European Journal of Pharmacology“The biological effects of endocannabinoid system are mediated by two types of receptors, cannabinoid 1 (CB1) and cannabinoid 2 receptor (CB2). They play a pivotal role in the management of pain, inflammation, cancer, obesity and diabetes mellitus.

CB2 receptor activity downregulation is hallmark of inflammation and oxidative stress. Strong evidence display the relation between activation of CB2 receptors with decrease in the pro-inflammatory cytokines and pro-apoptotic factors. Numerous in vitro and in vivo studies have been validated to confirm the role of CB2 receptor in the management of obesity, hyperlipidemia and diabetes mellitus by regulating glucose and lipid metabolism.

Activation of CB2 receptor has led to reduction of inflammatory cytokines; tumor necrosis factor-alpha (TNF-α), Interleukin 6 (IL-6), Nuclear factor kappa beta (NF-κβ) and also amelioration of reactive oxygen species and reactive nitrogen species playing role in apoptosis. Many studies confirmed the role of CB2 receptors in the insulin secretion via facilitating calcium entry into the pancreatic β-cells. CB2 receptors also displayed improvement in the neuronal and renal functions by decreasing the oxidative stress and downregulating inflammatory cascade.

The present review addresses, potential role of CB2 receptor activation in management of diabetes and its complications. It also includes the role of CB2 receptors as an anti-oxidant, anti-apoptotic and anti-inflammatory for the treatment of DM and its complications. Also, an informative summary of CB2 receptor agonist drugs is provided with their potential role in the reduction of glucose levels, increment in the insulin levels, decrease in the hyperglycaemic oxidative stress and inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/31461639

https://www.sciencedirect.com/science/article/pii/S0014299919305801?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Myrcene and terpene regulation of TRPV1.

Publication Cover“Nociceptive Transient Receptor Potential channels such as TRPV1 are targets for treating pain. Both antagonism and agonism of TRP channels can promote analgesia, through inactivation and chronic desensitization.

Since plant-derived mixtures of cannabinoids and the Cannabis component myrcene have been suggested as pain therapeutics, we screened terpenes found in Cannabis for activity at TRPV1.

These data establish TRPV1 as a target of Myrcene and suggest the therapeutic potential of analgesic formulations containing Myrcene.”

https://www.ncbi.nlm.nih.gov/pubmed/31446830

https://www.tandfonline.com/doi/full/10.1080/19336950.2019.1654347

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The effectiveness of self-directed medical cannabis treatment for pain

Complementary Therapies in Medicine“The prior medical literature offers little guidance as to how pain relief and side effect manifestation may vary across commonly used and commercially available cannabis product types. We used the largest dataset in the United States of real-time responses to and side effect reporting from patient-directed cannabis consumption sessions for the treatment of pain under naturalistic conditions in order to identify how cannabis affects momentary pain intensity levels and which product characteristics are the best predictors of therapeutic pain relief.

Between 06/06/2016 and 10/24/2018, 2987 people used the ReleafApp to record 20,513 cannabis administration measuring cannabis’ effects on momentary pain intensity levels across five pain categories: musculoskeletal, gastrointestinal, nerve, headache-related, or non-specified pain. The average pain reduction was –3.10 points on a 0–10 visual analogue scale (SD = 2.16, d = 1.55, p < .001).

Whole Cannabis flower was associated with greater pain relief than were other types of products, and higher tetrahydrocannabinol (THC) levels were the strongest predictors of analgesia and side effects prevalence across the five pain categories. In contrast, cannabidiol (CBD) levels generally were not associated with pain relief except for a negative association between CBD and relief from gastrointestinal and non-specified pain.

These findings suggest benefits from patient-directed, cannabis therapy as a mid-level analgesic treatment; however, effectiveness and side effect manifestation vary with the characteristics of the product used.

The results suggest that Cannabis flower with moderate to high levels of tetrahydrocannabinol is an effective mid-level analgesic.”

https://www.ncbi.nlm.nih.gov/pubmed/31519268

https://www.sciencedirect.com/science/article/abs/pii/S0965229919308040

“UNM study confirms cannabis flower is an effective mid-level analgesic medication for pain treatment. Cannabis likely has numerous constituents that possess analgesic properties beyond THC, including terpenes and flavonoids, which likely act synergistically for people that use whole dried cannabis flower, Cannabis offers the average patient an effective alternative to using opioids for general use in the treatment of pain with very minimal negative side effects for most people.”  https://news.unm.edu/news/unm-study-confirms-cannabis-flower-is-an-effective-mid-level-analgesic-medication-for-pain-treatment

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Opportunities for cannabis in supportive care in cancer.

 Related image“Cannabis has the potential to modulate some of the most common and debilitating symptoms of cancer and its treatments, including nausea and vomiting, loss of appetite, and pain.

However, the dearth of scientific evidence for the effectiveness of cannabis in treating these symptoms in patients with cancer poses a challenge to clinicians in discussing this option with their patients. A review was performed using keywords related to cannabis and important symptoms of cancer and its treatments.

Literature was qualitatively reviewed from preclinical models to clinical trials in the fields of cancer, human immunodeficiency virus (HIV), multiple sclerosis, inflammatory bowel disease, post-traumatic stress disorder (PTSD), and others, to prudently inform the use of cannabis in supportive and palliative care in cancer.

There is a reasonable amount of evidence to consider cannabis for nausea and vomiting, loss of appetite, and pain as a supplement to first-line treatments. There is promising evidence to treat chemotherapy-induced peripheral neuropathy, gastrointestinal distress, and sleep disorders, but the literature is thus far too limited to recommend cannabis for these symptoms.

Scant, yet more controversial, evidence exists in regard to cannabis for cancer- and treatment-related cognitive impairment, anxiety, depression, and fatigue. Adverse effects of cannabis are documented but tend to be mild.

Cannabis has multifaceted potential bioactive benefits that appear to outweigh its risks in many situations. Further research is required to elucidate its mechanisms of action and efficacy and to optimize cannabis preparations and doses for specific populations affected by cancer.”

https://www.ncbi.nlm.nih.gov/pubmed/31413731

https://journals.sagepub.com/doi/10.1177/1758835919866362

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Emerging role of cannabinoids and synthetic cannabinoid receptor 1/cannabinoid receptor 2 receptor agonists in cancer treatment and chemotherapy-associated cancer management

Journal of Cancer Research and Therapeutics“Cannabis was extensively utilized for its medicinal properties till the 19th century. A steep decline in its medicinal usage was observed later due to its emergence as an illegal recreational drug.

Advances in technology and scientific findings led to the discovery of delta-9-tetrahydrocannabinol (THC), the primary psychoactive compound of cannabis, that further led to the discovery of endogenous cannabinoids system consisting of G-protein-coupled receptors – cannabinoid receptor 1 and cannabinoid receptor 2 along with their ligands, mainly anandamide and 2-arachidonoylglycerol.  Endocannabinoid (EC) is shown to be a modulator not only for physiological functions but also for the immune system, endocrine network, and central nervous system.

Medicinal research and meta-data analysis over the last few decades have shown a significant potential for both THC and cannabidiol (CBD) to exert palliative effects. People suffering from many forms of advanced stages of cancers undergo chemotherapy-induced nausea and vomiting followed by severe and chronic neuropathic pain and weight loss.

THC and CBD exhibit effective analgesic, anxiolytic, and appetite-stimulating effect on patients suffering from cancer. Drugs currently available in the market to treat such chemotherapy-induced cancer-related ailments are Sativex (GW Pharmaceutical), Dronabinol (Unimed Pharmaceuticals), and Nabilone (Valeant Pharmaceuticals).

Apart from exerting palliative effects, THC also shows promising role in the treatment of cancer growth, neurodegenerative diseases (multiple sclerosis and Alzheimer’s disease), and alcohol addiction and hence should be exploited for potential benefits.

The current review discusses the nature and role of CB receptors, specific applications of cannabinoids, and major studies that have assessed the role of cannabinoids in cancer management.

Specific targeting of cannabinoid receptors can be used to manage severe side effects during chemotherapy, palliative care, and overall cancer management. Furthermore, research evidences on cannabinoids have suggested tumor inhibiting and suppressing properties which warrant reconsidering legality of the substance.

Studies on CB1 and CB2 receptors, in case of cancers, have demonstrated the psychoactive constituents of cannabinoids to be potent against tumor growth.

Interestingly, studies have also shown that activation of CB1 and CB2 cannabinoid receptors by their respective synthetic agonists tends to limit human cancer cell growth, suggesting the role of the endocannabinoid system as a novel target for treatment of cancers.

Further explorations are required to exploit cannabinoids for an effective cancer management.”

http://www.cancerjournal.net/preprintarticle.asp?id=263538

“Could Cannabis Kill Cancer Cells? A New Study Looks Promising”  https://www.portlandmercury.com/blogtown/2019/08/15/26977361/could-cannabis-kill-cancer-cells-a-new-study-looks-promising

“Study Reviews How Marijuana Compounds Inhibit Tumor Growth And Kill Cancer Cells” https://www.marijuanamoment.net/study-reviews-how-marijuana-compounds-inhibit-tumor-growth-and-kill-cancer-cells/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous