Cannabinoid Effects on Experimental Colorectal Cancer Models Reduce Aberrant Crypt Foci (ACF) and Tumor Volume: A Systematic Review

See the source image “Colorectal cancer represents a heavy burden for health systems worldwide, being the third most common cancer worldwide. Despite the breakthroughs in medicine, current chemotherapeutic options continue to have important side effects and may not be effective in preventing disease progression.

Cannabinoids might be substances with possible therapeutic potential for cancer because they can attenuate the side effects of chemotherapy and have antiproliferative and antimetastatic effects.

We aim to determine, through a systematic review of experimental studies performed on animal CRC models, if cannabinoids can reduce the formation of preneoplastic lesions (aberrant crypt foci), number, and volume of neoplastic lesions.

Results: Eight in vivo experimental studies were included in the analysis after the full-text evaluation. Seven studies were azoxymethane (AOM) colorectal cancer models, and four studies were xenograft models. Cannabidiol botanical substance (CBD BS) and rimonabant achieved high aberrant crypt foci (ACF) reduction (86% and 75.4%, respectively). Cannabigerol, O-1602, and URB-602 demonstrated a high capacity for tumor volume reduction. Induction of apoptosis, interaction with cell survival, growth pathways, and angiogenesis inhibition were the mechanisms extracted from the studies that explain cannabinoids’ actions on CRC.

Conclusions: Cannabinoids have incredible potential as antineoplastic agents as experimental models demonstrate that they can reduce tumor volume and ACF formation. It is crucial to conduct more experimental studies to understand the pharmacology of cannabinoids in CRC better.”

https://pubmed.ncbi.nlm.nih.gov/32765628/

“Current literature findings demonstrate that cannabinoids might have potential as antineoplastic agents because they can reduce tumor volume and ACF formation.”

https://www.hindawi.com/journals/ecam/2020/2371527/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Effects of Cannabidiol and Prognostic Role of TRPV2 in Human Endometrial Cancer

ijms-logo“Several studies support, both in vitro and in vivo, the anti-cancer effects of cannabidiol (CBD), a transient receptor potential vanilloid 2 (TRPV2) ligand. TRPV2, often dysregulated in tumors, is associated with altered cell proliferation and aggressiveness.

Endometrial cancer (EC) is historically divided in type I endometrioid EC and type II non-endometrioid EC, associated with poor prognosis. Treatment options with chemotherapy and combinations with radiation showed only limited efficacy. Since no data are reported concerning TRPV2 expression as well as CBD potential effects in EC, the aim of this study was to evaluate the expression of TRPV2 in biopsies and cell lines as well as the effects of CBD in in vitro models. Overall survival (OS), progression-free survival (PFS), cell viability, migration, and chemo-resistance have been evaluated.

Results show that TRPV2 expression increased with the malignancy of the cancer tissue and correlated with shorter PFS (p = 0.0224). Moreover, in vitro TRPV2 over-expression in Ishikawa cell line increased migratory ability and response to cisplatin. CBD reduced cell viability, activating predominantly apoptosis in type I cells and autophagy in mixed type EC cells. The CBD improved chemotherapeutic drugs cytotoxic effects, enhanced by TRPV2 over-expression. Hence, TRPV2 could be considered as a marker for optimizing the therapy and CBD might be a useful therapeutic option as adjuvant therapy.”

https://pubmed.ncbi.nlm.nih.gov/32751388/

https://www.mdpi.com/1422-0067/21/15/5409

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis

cancers-logo“In recent years, and even more since its legalization in several jurisdictions, cannabis and the endocannabinoid system have received an increasing amount of interest related to their potential exploitation in clinical settings. Cannabinoids have been suggested and shown to be effective in the treatment of various conditions. In cancer, the endocannabinoid system is altered in numerous types of tumours and can relate to cancer prognosis and disease outcome. Additionally, cannabinoids display anticancer effects in several models by suppressing the proliferation, migration and/or invasion of cancer cells, as well as tumour angiogenesis. However, the therapeutic use of cannabinoids is currently limited to the treatment of symptoms and pain associated with chemotherapy, while their potential use as cytotoxic drugs in chemotherapy still requires validation in patients. Along with cannabinoids, cannabis contains several other compounds that have also been shown to exert anti-tumorigenic actions. The potential anti-cancer effects of cannabinoids, terpenes and flavonoids, present in cannabis, are explored in this literature review.”

https://pubmed.ncbi.nlm.nih.gov/32708138/

https://www.mdpi.com/2072-6694/12/7/1985

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Phytocannabinoids: General Aspects and Pharmacological Potential in Neurodegenerative Diseases

 “In the last few years research into Cannabis and its constituent phytocannabinoids has burgeoned, particularly in the potential application of novel cannabis phytochemicals for the treatment of diverse illnesses related to neurodegeneration and dementia, including Alzheimer’s (AD), Parkinson’s (PD) and Huntington’s disease (HD). To date, these neurological diseases have mostly relied on symptomatological management. However, with an aging population globally, the search for more efficient and disease-modifying treatments that could delay or mitigate disease progression is imperative. In this context, this review aims to present a state of art in the research with cannabinoids and novel cannabinoid-based drug candidates that have been emerged as novel promising alternatives for drug development and innovation in the therapeutics of a number of diseases, especially those related to CNS-disturbance and impairment.”

https://pubmed.ncbi.nlm.nih.gov/32691712/

https://www.eurekaselect.com/183955/article

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Naturally Occurring Cannabinoids and their Role in Modulation of Cardiovascular Health

 Publication Cover“In recent years, the role of the endocannabinoid system (ECS) in various cardiovascular conditions has been a subject of great interest. The ECS is composed of cannabinoid receptors, their endogenous ligands, also known as endocannabinoids, and enzymes responsible for the synthesis and degradation of endocannabinoids.

Several lines of evidence suggest that the ECS plays a complex role in cardiac and vascular systems; however, under normal physiological conditions the functions of the ECS are limited. Overactivation of components of the ECS has been associated with various cardiovascular conditions.

Intriguingly, activation of the ECS may also reflect a cardioprotective compensatory mechanism. With this knowledge, a range of naturally occurring and synthetic cannabinoid receptor agonists and antagonists, as well as inhibitors of endocannabinoid metabolic enzymes have emerged as promising approaches for the treatment or management of cardiovascular health.

This review will first focus on the known role of the ECS in regulating the cardiovascular system. Secondly, we discuss emerging data highlighting the therapeutic potential of naturally occurring non-psychoactive ECS modulators within the cardiovascular system, including phytocannabinoids, terpenes, and the endocannabinoid-like molecule palmitoylethanolamide.”

https://pubmed.ncbi.nlm.nih.gov/32677481/

“Several approaches discussed here, including administration of eCB-related molecules such as PEA, or supplementing with various phytocannabinoids can be promising candidates for the management of cardiovascular risk factors and CVD.”

https://www.tandfonline.com/doi/full/10.1080/19390211.2020.1790708

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Pro-neurogenic Effects of Cannabidiol and Its Potential Therapeutic Implications in Psychiatric Disorders

Archive of "Frontiers in Behavioral Neuroscience". “During the last decades, researchers have investigated the functional relevance of adult hippocampal neurogenesis in normal brain function as well as in the pathogenesis of diverse psychiatric conditions.

Although the underlying mechanisms of newborn neuron differentiation and circuit integration have yet to be fully elucidated, considerable evidence suggests that the endocannabinoid system plays a pivotal role throughout the processes of adult neurogenesis. Thus, synthetic, and natural cannabinoid compounds targeting the endocannabinoid system have been utilized to modulate the proliferation and survival of neural progenitor cells and immature neurons.

Cannabidiol (CBD), a constituent of the Cannabis Sativa plant, interacts with the endocannabinoid system by inhibiting fatty acid amide hydrolase (FAAH) activity (the rate-limiting enzyme for anandamide hydrolysis), allosterically modulating CB1 and CB2 receptors, and activating components of the “extended endocannabinoid system.” Congruently, CBD has shown prominent pro-neurogenic effects, and, unlike Δ9-tetrahydrocannabinol, it has the advantage of being devoid of psychotomimetic effects.

Here, we first review pre-clinical studies supporting the facilitating effects of CBD on adult hippocampal neurogenesis and available data disclosing cannabinoid mechanisms by which CBD can induce neural proliferation and differentiation. We then review the respective implications for its neuroprotective, anxiolytic, anti-depressant, and anti-reward actions.

In conclusion, accumulating evidence reveals that, in rodents, adult neurogenesis is key to understand the behavioral manifestation of symptomatology related to different mental disorders. Hence, understanding how CBD promotes adult neurogenesis in rodents could shed light upon translational therapeutic strategies aimed to ameliorate psychiatric symptomatology dependent on hippocampal function in humans.”

https://pubmed.ncbi.nlm.nih.gov/32676014/

https://www.frontiersin.org/articles/10.3389/fnbeh.2020.00109/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Opioids/cannabinoids as a potential therapeutic approach in COVID-19 patients

Publication Cover“So far, no vaccine has been successfully developed and there is no effective treatment of COVID-19.

Since intensive inflammation leads to disease-induced morbidity and mortality, inhibition of the hyperinflammatory response is a definitive drug therapy objective.

Certainly, there is an urgent need for a substance that can potentially counter the effects of the virus and alleviate the symptoms and severity of the disease.

Could opioids/cannabinoids be an effective treatment for COVID-19?

Since opioids/cannabinoids receptors-based drugs can modulate immune cell migration and cytokine/chemokine secretion, they represent a promising pharmacological platform for developing anti-inflammatory therapeutics.

Therefore in the absence of effective treatments to decrease the damage associated with COVID-19 especially in those admitted to the ICU and suffer from exaggerated inflammatory response, opioids/cannabinoids receptor agonists might potentially open up an effective therapeutic approach in COVID-19 infection.

It is interesting to remember that physicians in the late 19th century used anodynes of opium tincture as a treatment of ‘bronchitis’ and other ailments in infants and children, as case reports and experience ‘demonstrated the efficacy’ of the concoction in controlling coughing and facilitating breathing.

Also, today some products of cannabinoids are used to modulate an inflammatory response. This permits us to rediscover the past and utilize the present, with hopes of finding the missing links in the pathophysiology of COVID-19, and raises the issue of opioids/cannabinoids utilization in the context of COVID-19.

It is suggested that clinical trials could be conducted on opioids/cannabinoids products with immunomodulatory activity. We hope that, with great efforts, scientific support, and sharing of information, the overcoming of COVID-19 will come soon.”

https://www.tandfonline.com/doi/full/10.1080/17476348.2020.1787836

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The endocannabinoid system

Essays in Biochemistry “Thirty years ago, the discovery of a cannabinoid (CB) receptor that interacts with the psychoactive compound in Cannabis led to the identification of anandamide, an endogenous receptor ligand or endocannabinoid. Research on endocannabinoids has since exploded, and additional receptors along with their lipid mediators and signaling pathways continue to be revealed. Specifically, in humans, the release of endocannabinoids from membrane lipids occurs on demand and the signaling process is rapidly attenuated by the breakdown of the ligand suggesting a tight regulation of the endocannabinoid system (ECS). Additionally, the varying distribution of CB receptors between the central nervous system and other tissues allows for the ECS to participate in a wide range of cognitive and physiological processes. Select plant-derived ‘phyto’cannabinoids such as Δ-9-tetrahydrocannabinol (Δ9-THC) bind to the CB receptors and trigger the ECS, and in the case of Δ9-THC, while it has therapeutic value, can also produce detrimental effects. Current research is aimed at the identification of additional phytocannabinoids with minimal psychotropic effects with potential for therapeutic development. Although decades of research on the ECS and its components have expanded our understanding of the mechanisms and implications of endocannabinoid signaling in mammals, it continues to evolve. Here, we provide a brief overview of the ECS and its overlap with other related lipid-mediated signaling pathways.”

https://pubmed.ncbi.nlm.nih.gov/32648908/

“Therapeutic intervention in the dysregulation of the ECS will no doubt involve new phytocannabinoids and various synthetic CBs with which to control an increasing list of ECS- related pathologies.”

https://portlandpress.com/essaysbiochem/article/doi/10.1042/EBC20190086/225762/The-endocannabinoid-system

Anandamide and 2-AG are the principal endogenous ligands that define the classical endocannabinoid signaling system (ECS).

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol attenuates methamphetamine-induced conditioned place preference via the Sigma1R/AKT/GSK-3β/CREB signaling pathway in rats

 Issue Cover“Methamphetamine (METH) is a highly addictive psychostimulant.

Cannabidiol (CBD) is an exogenous cannabinoid without psychostimulating activity, which has potential therapeutic effects on opioid addiction. However, it is unclear whether CBD has therapeutic effects on METH-induced motivational effects.

The present study examines whether CBD has a protective effect on METH-induced conditioned place preference (CPP) in rats by regulating the Sigma1R and AKT-GSK3β-CREB signaling pathway.

The present study found that METH can induce CPP in rats. When a pretreatment of CBD is applied, the CBD can weaken CPP in METH-induced rats by regulating the SigmaR1/AKT/GSK-3β/CREB signaling pathway.

The results of this study indicate that CBD has a potential therapeutic effect on METH-induced rewarding effects.”

https://pubmed.ncbi.nlm.nih.gov/32670551/

https://academic.oup.com/toxres/article-abstract/9/3/202/5831937?redirectedFrom=fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Understanding the basics of cannabidiol from cannabis to apply to therapeutics in epilepsy

Page Header“The compounds present in cannabis have been in use for both recreational and medicinal purposes for many centuries. Changes in the legislation in South Africa have led to an increase in the number of people interested in using these compounds for self-medication. Many of them may approach their general practitioner as the first source of information about possible therapeutic effects. It is important that medical professionals are able to give patients the correct information. Cannabidiol (CBD) is one of the main compounds in cannabis plants, and there is evidence that it can successfully treat certain patients with epilepsy. This review looks at the most recent evidence on the use of CBD in the treatment of epilepsy and explores the mechanisms behind these beneficial effects.”

https://pubmed.ncbi.nlm.nih.gov/32657678/

http://www.samj.org.za/index.php/samj/article/view/12839

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous