Cannabis, a Miracle Drug with Polyvalent Therapeutic Utility: Preclinical and Clinical-Based Evidence

/WebMaterial/ShowPic/1319420“Cannabis sativa L. is an annual herbaceous dioecious plant which was first cultivated by agricultural human societies in Asia. Over the period of time, various parts of the plant like leaf, flower, and seed were used for recreational as well as therapeutic purposes. The main chemical components of Cannabis sativa are termed as cannabinoids, among them the key psychoactive constituent is Δ-9-tetrahydrocannabinol and cannabidiol (CBD) as active nonpsychotic constituent. Upon doing extensive literature review, it was found that cannabis has been widely studied for a number of disorders. Very recently, a pure CBD formulation, named Epidiolex, got a green flag from both United States Food and Drug Administration and Drug Enforcement Administration for 2 rare types of epilepsies. This laid a milestone in medical cannabis research.

This review intends to give a basic and extensive assessment, from past till present, of the ethnological, plant, chemical, pharmacological, and legal aspects of C. sativa. Further, this review contemplates the evidence the studies obtained of cannabis components on Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis, multiple sclerosis, emesis, epilepsy, chronic pain, and cancer as a cytotoxic agent as well as a palliative therapy. The assessment in this study was done by reviewing in extensive details from studies on historical importance, ethnopharmacological aspects, and legal grounds of C. sativa from extensive literature available on the scientific databases, with a vision for elevating further pharmaceutical research to investigate its total potential as a therapeutic agent.”

https://pubmed.ncbi.nlm.nih.gov/34676349/

“This study has analyzed and reviewed the historical, botanical, chemical, ethnopharmacological, and legal aspects of C. sativa from the first human use to the present medical applications with an analysis of its multiple therapeutic applications for various diseased conditions in the contemporary scientific context. There is an abundance of support for its several medicative uses as well as a possible benefit in various diseased conditions. Extensive pharmacological examination is still needed to better understand the clinical significance and uses of active cannabinoids in the treatment and prevention of chronic diseases. Also, cannabis can be chemically standardized and under prescription can be used. With the majority of the United States currently legalizing medicinal cannabis and/or restricted CBD-only use, physicians need to be educated on the history and correct clinical use of cannabis, as a result of which patients can know more and more about possible treatment utilizing cannabis. Medical cannabis has shown to have clinical efficacy in our past, and in present, data show its therapeutic effects. Extensive research in the field of cannabis can be very fruitful for the medicine world.”

https://www.karger.com/Article/FullText/515042

Perspectives of pediatric oncologists and palliative care physicians on the therapeutic use of cannabis in children with cancer

Cancer Reports“Background: Children with cancer are increasingly using cannabis therapeutically.

Aim: The purpose of this study was to determine the perspectives and practices of pediatric oncologists and palliative care physicians regarding the use of cannabis for medical purposes among children with cancer.

Methods: A self-administered, voluntary, cross-sectional, deidentified online survey was sent to all pediatric oncologists and palliative care physicians in Canada between June and August 2020. Survey domains included education, knowledge, and concerns about cannabis, views on its effectiveness, and the importance of cannabis-related research. Data were analyzed using descriptive statistics.

Results: In total, 122/259 (47.1%) physicians completed the survey. Although 62.2% of the physicians completed some form of training about medical cannabis, nearly all (95.8%) desired to know more about the dosing, side effects, and safety of cannabis. Physicians identified a potential role of cannabis in the management of nausea and vomiting (85.7%), chronic pain (72.3%), cachexia/poor appetite (67.2%), and anxiety or depression (42.9%). Only four (0.3%) physicians recognized cannabis to be potentially useful as an anticancer agent. Nearly all physicians reported that cannabis-related research for symptom relief is essential (91.5%) in pediatric oncology, whereas 51.7% expressed that future studies are necessary to determine the anticancer effects of cannabis.

Conclusions: Our findings indicate that most pediatric oncologists and palliative care physicians recognize a potential role for cannabis in symptom control in children with cancer. Well-conducted studies are required to create evidence for cannabis use and promote shared decision making with pediatric oncology patients and their caregivers.”

https://pubmed.ncbi.nlm.nih.gov/34672127/

“Several important implications from our findings include an urgent call for research and the development of clinical practice guidelines to support families and health care providers advising on the use of cannabis products in pediatric oncology. Funding agencies would be wise to provide direct funding opportunities for cannabis research in cancer, particularly among pediatric oncology populations where interest and use are rapidly outpacing the generation of rigorous evidence on dosing, efficacy, and safety.”

https://onlinelibrary.wiley.com/doi/10.1002/cnr2.1551

Analgesic Potential of Terpenes Derived from Cannabis sativa

Pharmacological Reviews“Pain prevalence among adults in the United States has increased 25% over the past two decades, resulting in high health-care costs and impacts to patient quality of life. In the last 30 years, our understanding of pain circuits and (intra)cellular mechanisms has grown exponentially, but this understanding has not yet resulted in improved therapies. Options for pain management are limited. Many analgesics have poor efficacy and are accompanied by severe side effects such as addiction, resulting in a devastating opioid abuse and overdose epidemic. These problems have encouraged scientists to identify novel molecular targets and develop alternative pain therapeutics.

Increasing preclinical and clinical evidence suggests that cannabis has several beneficial pharmacological activities, including pain relief.

Cannabis sativa contains more than 500 chemical compounds, with two principle phytocannabinoids, Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Beyond phytocannabinoids, more than 150 terpenes have been identified in different cannabis chemovars. Although the predominant cannabinoids, Δ9-THC and CBD, are thought to be the primary medicinal compounds, terpenes including the monoterpenes β-myrcene, α-pinene, limonene, and linalool, as well as the sesquiterpenes β-caryophyllene and α-humulene may contribute to many pharmacological properties of cannabis, including anti-inflammatory and antinociceptive effects.

The aim of this review is to summarize our current knowledge about terpene compounds in cannabis and to analyze the available scientific evidence for a role of cannabis-derived terpenes in modern pain management.

SIGNIFICANCE STATEMENT: Decades of research have improved our knowledge of cannabis polypharmacy and contributing phytochemicals, including terpenes. Reform of the legal status for cannabis possession and increased availability (medicinal and recreational) have resulted in cannabis use to combat the increasing prevalence of pain and may help to address the opioid crisis. Better understanding of the pharmacological effects of cannabis and its active components, including terpenes, may assist in identifying new therapeutic approaches and optimizing the use of cannabis and/or terpenes as analgesic agents.”

https://pubmed.ncbi.nlm.nih.gov/34663685/

“Cannabis sativa has been used for medical, recreational, and spiritual purposes for thousands of years. Modern scientific studies have provided increasing amounts of preclinical and clinical evidence about its beneficial pharmacological effects, including pain relief. Recent changes in the legislation of cannabis usage and possession have resulted in cannabis-based products becoming widely used alternatives in fighting against many different illnesses. Medical marijuana has been applied to treat a host of indications, but the most frequent, and evidence-backed indication, is pain. Overall, cannabis terpenes have a high potential for pain management, alone or as adjunctive therapeutics, and are attractive compounds for the development of terpene-based analgesics given their generally-recognized-as-safe status with low side effect and toxicity profiles.”

Alterations in Brain Cannabinoid Receptor Levels Are Associated with HIV-Associated Neurocognitive Disorders in the ART Era: Implications for Therapeutic Strategies Targeting the Endocannabinoid System

viruses-logo“HIV-associated neurocognitive disorders (HAND) persist despite the advent of antiretroviral therapy (ART), suggesting underlying systemic and central nervous system (CNS) inflammatory mechanisms.

The endogenous cannabinoid receptors 1 and 2 (CB1 and CB2) modulate inflammatory gene expression and play an important role in maintaining neuronal homeostasis. Cannabis use is disproportionately high among people with HIV (PWH) and may provide a neuroprotective effect for those on ART due to its anti-inflammatory properties. However, expression profiles of CB1 and CB2 in the brains of PWH on ART with HAND have not been reported.

In this study, biochemical and immunohistochemical analyses were performed to determine CB1 and CB2 expression in the brain specimens of HAND donors.

Immunoblot revealed that CB1 and CB2 were differentially expressed in the frontal cortices of HAND brains compared to neurocognitively unimpaired (NUI) brains of PWH. CB1 expression levels negatively correlated with memory and information processing speed. CB1 was primarily localized to neuronal soma in HAND brains versus a more punctate distribution of neuronal processes in NUI brains. CB1 expression was increased in cells with glial morphology and showed increased colocalization with an astroglial marker.

These results suggest that targeting the endocannabinoid system may be a potential therapeutic strategy for HAND.”

https://pubmed.ncbi.nlm.nih.gov/34578323/

https://www.mdpi.com/1999-4915/13/9/1742

Hepatic Cannabinoid Signaling in the Regulation of Alcohol-Associated Liver Disease

Logo of arcr“Purpose: The endocannabinoid system has emerged as a key regulatory signaling pathway in the pathophysiology of alcohol-associated liver disease (ALD). More than 30 years of research have established different roles of endocannabinoids and their receptors in various aspects of liver diseases, such as steatosis, inflammation, and fibrosis. However, pharmacological applications of the endocannabinoid system for the treatment of ALD have not been successful because of psychoactive side effects, despite some beneficial effects. Thus, a more delicate and detailed elucidation of the mechanism linking the endocannabinoid system and ALD may be of paramount significance in efforts to apply the system to the treatment of ALD.

Search results: According to the inclusion and exclusion criteria, the authors selected 47 eligible full-text articles out of 2,691 searched initially. Studies in the past 3 decades revealed the opposite effects of cannabinoid receptors CB1R and CB2R on steatosis, inflammation, and fibrosis in ALD.

Discussion and conclusions: This review summarizes the endocannabinoid signaling in the general physiology of the liver, the pathogenesis of ALD, and some of the potential therapeutic implications of cannabinoid-based treatments for ALD.”

https://pubmed.ncbi.nlm.nih.gov/34646717/

“Over the past 30 years, it has been found that the endocannabinoid system is involved in a variety of pathways associated with the onset, or the progression, of several diseases, including ALD. The endocannabinoid system has been observed in both the hepatocytes and various nonparenchymal cells in the liver, in which the endocannabinoid production and its receptor activation may contribute to the development of a spectrum of ALD, ranging from simple alcoholic steatosis to more severe forms such as steatohepatitis and fibrosis. Therefore, understanding the precise physiology of the endocannabinoid system in the liver and unveiling the mechanism underlying the association between ALD progression and hepatic endocannabinoid signaling seem to bear a paramount significance for the advancement of ALD treatment, as well as for the treatment of other chronic liver diseases (e.g., NAFLD, viral hepatitis). Moreover, developing efficacious and highly selective cannabinoid receptor–modulating drugs could be a major breakthrough in the treatment of ALD.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496755/

An external file that holds a picture, illustration, etc.
Object name is arcr-41-1-12f1.jpg

Novel CBG Derivatives Can Reduce Inflammation, Pain and Obesity

molecules-logo“Interest in CBG (cannabigerol) has been growing in the past few years, due to its anti-inflammatory properties and other therapeutic benefits.

Here we report the synthesis of three new CBG derivatives (HUM-223, HUM-233 and HUM-234) and show them to possess anti-inflammatory and analgesic properties.

In addition, HUM-234 also prevents obesity in mice fed a high-fat diet (HFD). The metabolic state of the treated mice on HFD is significantly better than that of vehicle-treated mice, and their liver slices show significantly less steatosis than untreated HFD or CBG-treated ones from HFD mice.

We believe that HUM-223, HUM-233 and HUM-234 have the potential for development as novel drug candidates for the treatment of inflammatory conditions, and in the case of HUM-234, potentially for obesity where there is a huge unmet need.”

https://pubmed.ncbi.nlm.nih.gov/34577072/

https://www.mdpi.com/1420-3049/26/18/5601

A potential role for cannabichromene in modulating TRP channels during acute respiratory distress syndrome

Special Issue Springer/Nature BMC Medical Informatics & Decision Making -  Explainable-AI - human-centered.ai“Acute respiratory distress syndrome (ARDS) is a life-threatening clinical syndrome whose potential to become one of the most grievous challenges of the healthcare system evidenced by the COVID-19 pandemic. Considering the lack of target-specific treatment for ARDS, it is absolutely exigent to have an effective therapeutic modality to reduce hospitalization and mortality rate as well as to improve quality of life and outcomes for ARDS patients. ARDS is a systemic inflammatory disease starting with the pulmonary system and involves all other organs in a morbid bidirectional fashion. Mounting evidence including our findings supporting the notion that cannabinoids have potential to be targeted as regulatory therapeutic modalities in the treatment of inflammatory diseases. Therefore, it is plausible to test their capabilities as alternative therapies in the treatment of ARDS. In this study, we investigated the potential protective effects of cannabichromene (CBC) in an experimental model of ARDS.

Results: Our data showed that CBC was able to reverse the hypoxia (increasing blood O2 saturation by 8%), ameliorate the symptoms of ARDS (reducing the pro-inflammatory cytokines by 50% in lung and blood), and protect the lung tissues from further destruction. Further analysis showed that CBC may wield its protective effects through transient receptor potential (TRP) cation channels, TRPA1 and TRPV1, increasing their expression by 5-folds in lung tissues compared to sham and untreated mice, re-establishing the homeostasis and immune balance.

Conclusion: Our findings suggest that inhalant CBC may be an effective alternative therapeutic target in the treatment of ARDS. In addition, Increased expression of TRPs cation channels after CBC treatment proposes a novel role for TRPs (TRPA1 and TRPV2) as new potential mechanism to interpret the beneficial effects of CBC as well as other cannabinoids in the treatment of ARDS as well as other inflammatory diseases. Importantly, delivering CBC through an inhaler device is a translational model supporting the feasibility of trial with human subjects, authorizing further research.”

https://pubmed.ncbi.nlm.nih.gov/34598736/

“Cannabinoids are naturally occurring compounds in Cannabis plants. Numerous studies suggest beneficial effects of cannabinoids in clinical settings.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-021-00101-0

The potential of cannabinoids and inhibitors of endocannabinoid degradation in respiratory diseases

European Journal of Pharmacology“The global incidence of respiratory diseases and complications is increasing. Therefore, new methods of treatment, as well as prevention, need to be investigated.

A group of compounds that should be considered for use in respiratory diseases is cannabinoids. There are three groups of cannabinoids – plant-derived phytocannabinoids, synthetic cannabinoids, and endogenous endocannabinoids including the enzymes responsible for their synthesis and degradation.

All cannabinoids exert their biological effects through either type 1 cannabinoid receptors (CB1) and/or type 2 cannabinoid receptors (CB2). In numerous studies (in vitro and in vivo), cannabinoids and inhibitors of endocannabinoid degradation have shown beneficial anti-inflammatory, antioxidant, anti-cancer, and anti-fibrotic properties.

Although in the respiratory system, most of the studies have focused on the positive properties of cannabinoids and inhibitors of endocannabinoid degradation. There are few research reports discussing the negative impact of these compounds. This review summarizes the properties and mechanisms of action of cannabinoids and inhibitors of endocannabinoid degradation in various models of respiratory diseases.

A short description of the effects selected cannabinoids have on the human respiratory system and their possible use in the fight against COVID-19 is also presented. Additionally, a brief summary is provided of cannabinoid receptors properties and their expression in the respiratory system and cells of the immune system.”

https://pubmed.ncbi.nlm.nih.gov/34648805/

“Phytocannabinoids are terpenophenolic compounds produced by specialized parts of the Cannabis sativa plant and are found in high concentrations in marijuana and hashish. In most of models, these compounds have shown positive biological properties. Anti-inflammatory, anti-oxidant, anti-cancer and anti-fibrotic actions are especially emphasized.”

https://www.sciencedirect.com/science/article/pii/S0014299921007160?via%3Dihub

Characterization of cannabinoid receptors expressed in Ewing sarcoma TC-71 and A-673 cells as potential targets for anti-cancer drug development

Life Sciences“Aims: Characterizing cannabinoid receptors (CBRs) expressed in Ewing sarcoma (EWS) cell lines as potential targets for anti-cancer drug development.

Main methods: CBR affinity and function were examined by competitive binding and G-protein activation, respectively. Cannabinoid-mediated cytotoxicity and cell viability were evaluated by LDH, and trypan blue assays, respectively.

Key findings: qRT-PCR detected CB1 (CB1R) and CB2 receptor (CB2R) mRNA in TC-71 cells. However, binding screens revealed that CBRs expressed exhibit atypical properties relative to canonical receptors, because specific binding in TC-71 could only be demonstrated by the established non-selective CB1/CB2R radioligand [3H]WIN-55,212-2, but not CB1/CB2R radioligand [3H]CP-55,940. Homologous receptor binding demonstrated that [3H]WIN-55,212-2 binds to a single site with nanomolar affinity, expressed at high density. Further support for non-canonical CBRs expression is provided by subsequent binding screens, revealing that only 9 out of 28 well-characterized cannabinoids with high affinity for canonical CB1 and/or CB2Rs were able to displace [3H]WIN-55,212-2, whereas two ligands enhanced [3H]WIN-55,212-2 binding. Five cannabinoids producing the greatest [3H]WIN-55,212-2 displacement exhibited high nanomolar affinity (Ki) for expressed receptors. G-protein modulation and adenylyl cyclase assays further indicate that these CBRs exhibit distinct signaling/functional profiles compared to canonical CBRs. Importantly, cannabinoids with the highest affinity for non-canonical CBRs reduced TC-71 viability and induced cytotoxicity in a time-dependent manner. Studies in a second EWS cell line (A-673) showed similar atypical binding properties of expressed CBRs, and cannabinoid treatment produced cytotoxicity.

Significance: Cannabinoids induce cytotoxicity in EWS cell lines via non-canonical CBRs, which might be a potential therapeutic target to treat EWS.”

https://pubmed.ncbi.nlm.nih.gov/34592231/

Cannabinoid receptors (CBRs) were detected in EWS TC-71 and A-673 cells. CBRs expressed in EWS cell lines exhibit atypical binding and signaling characteristics. Ligands with highest affinity for these non-canonical CBRs induce EWS cell death.”

https://www.sciencedirect.com/science/article/abs/pii/S0024320521009802?via%3Dihub

 

The strengths and limits of cannabinoids and their receptors in cancer: Insights into the role of tumorigenesis-underlying mechanisms and therapeutic aspects

Biomedicine & Pharmacotherapy“Cancer, as a mysterious and complex disease, has a multi-stage molecular process that uses the cellular molecular machine and multiple signaling pathways to its advantage. Cannabinoids, as terpenophenolic compounds and their derivatives, showed influences on immune system responses, inflammation, and cell growth that have sparked a growing interest in exploring their effects on cancer cell fate, as well. A large body of evidence in experimental models indicating the involvement of cannabinoids and their related receptors in cancer cell growth, development, and fate. In accordance, the present study provided insights regarding the strengths and limits of cannabinoids and their receptors in critical steps of tumorigenesis and its underlying molecular pathways such as; cancer cell proliferation, type of cell death pathway, angiogenesis, invasion, metastasis and, immune system response. Based on the results of the present study and due to the contribution of cannabinoids in various cancer cell growth control processes, these compounds cancer can be considered worthwhile in finding new alternatives for cancer therapy.”

https://pubmed.ncbi.nlm.nih.gov/34624678/

“Cannabinoids execute critical roles in multiple steps of tumorigenesis. Cannabinoids trigger apoptosis, autophagy and mitophagy in cancer cells. Cannabinoids attenuate angiogenesis; thus regulate tumor invasion. Cannabinoids and their receptors can be effective therapeutic targets in cancer pathogenesis.”

https://www.sciencedirect.com/science/article/pii/S0753332221010635?via%3Dihub