Cannabichromene is a cannabinoid CB2 receptor agonist.

British Journal of Pharmacology banner“Cannabichromene (CBC) is one of the most abundant phytocannabinoids in Cannabis spp. It has modest anti-nociceptive and anti-inflammatory effects and potentiates some effects of Δ9 – tetrahydrocannabinol (THC) in vivo. How CBC exerts these effects is poorly defined and there is little information about its efficacy at cannabinoid receptors. We sought to determine the functional activity of CBC at CB1 and CB2 receptors.

KEY RESULTS:

CBC activated CB2 but not CB1 receptors to produce a hyperpolarization of AtT20 cells. This activation was inhibited by a CB2 antagonist AM630, and sensitive to pertussis toxin. Application of CBC reduced activation of CB2 receptors (but not CB1 receptors) by subsequent co-application of CP55,940, an efficacious CB1 and CB2 agonist. Continuous CBC application induced loss of cell surface CB2 receptors and desensitisation of the CB2-induced hyperpolarization.

CONCLUSIONS AND IMPLICATIONS:

CBC is a selective CB2 receptor agonist displaying higher efficacy than THC in hyperpolarising AtT20 cells. CBC can also recruit CB2 receptor regulatory mechanisms. CBC may contribute to the potential therapeutic effectiveness of some cannabis preparations, potentially through CB2-mediated modulation of inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/31368508

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14815

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Dosage Related Efficacy and Tolerability of Cannabidiol in Children With Treatment-Resistant Epileptic Encephalopathy: Preliminary Results of the CARE-E Study.

 Image result for frontiers in neurology“There is uncertainty regarding the appropriate dose of Cannabidiol (CBD) for childhood epilepsy.

We present the preliminary data of seven participants from the Cannabidiol in Children with Refractory Epileptic Encephalopathy (CARE-E) study.

Methods: The study is an open-label, prospective, dose-escalation trial. Participants received escalating doses of a Cannabis Herbal Extract (CHE) preparation of 1:20 Δ9-tetrahydrocannabinol (THC): CBD up to 10-12 mg CBD/kg/day. Seizure frequency was monitored in daily logs, participants underwent regular electroencephalograms, and parents filled out modified Quality of Life in Childhood Epilepsy (QOLCE) and Side Effect rating scale questionnaires. Steady-state trough levels (Css, Min) of selected cannabinoids were quantified.

Results: All seven participants tolerated the CHE up to 10-12 mg CBD/kg/day and had improvements in seizure frequency and QOLCE scores. CSS, Min plasma levels for CBD, THC, and cannabichromene (CBC) showed dose-independent pharmacokinetics in all but one participant. CSS, Min CBD levels associated with a >50% reduction in seizures and seizure freedom were lower than those reported previously with purified CBD. In most patients, CSS, Min levels of THC remained lower than what would be expected to cause intoxication.

Conclusion: The preliminary data suggest an initial CBD target dose of 5-6 mg/kg/day when a 1:20 THC:CBD CHE is used. Possible non-linear pharmacokinetics of CBD and CBC needs investigation. The reduction in seizure frequency seen suggests improved seizure control when a whole plant CHE is used. Plasma THC levels suggest a low risk of THC intoxication when a 1:20 THC:CBD CHE is used in doses up to 12 mg/kg CBD/kg/day.”

https://www.ncbi.nlm.nih.gov/pubmed/31333569

https://www.frontiersin.org/articles/10.3389/fneur.2019.00716/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

“Cannabis Found Effective in Fighting Drug-Resistant Bacteria”

1957: “[Hemp (Cannabis sativa); antibiotic drug. I. Hemp in the old & popular medicine].” https://www.ncbi.nlm.nih.gov/pubmed/13484424
1958: “[Hemp (Cannabis sativa)–antibiotic drugs. II. Method & results of bacteriological experiments & preliminary clinical experience].” https://www.ncbi.nlm.nih.gov/pubmed/13553773
1959: “[Hemp (Cannabis sativa)-an antibiotic drug. 3. Isolation and constitution of two acids from Cannabis sativa].” https://www.ncbi.nlm.nih.gov/pubmed/14411912
1962: “Antibiotic activity of various types of cannabis resin.” https://www.ncbi.nlm.nih.gov/pubmed/14489783
2008: “Antibacterial cannabinoids from Cannabis sativa: a structure-activity study.” https://www.ncbi.nlm.nih.gov/pubmed/18681481
“Cannabis plant extracts can effectively fight drug-resistant bacteria.” http://abcnews.go.com/Technology/story?id=5787866
“According to research, the five most common cannabinoid compounds in weed—tetrahydrocannabinol (THC), cannabidiol, cannabigerol, cannabinol and cannabichromene—can kill antibiotic-resistant bacteria.” https://blogs.scientificamerican.com/news-blog/whoa-the-stuff-in-pot-kills-germs-2008-08-27/
“All five cannabinoids (THC, CBD, CBG, CBC, and CBN) were potent against bacteria. Notably, they performed well against bacteria that were known to be multidrug resistant, like the strains of MRSA” http://arstechnica.com/science/2008/08/killing-bacteria-with-cannabis/
2014: “Better than antibiotics, cannabinoids kill antibiotic-resistant MRSA bacteria” http://usahealthresource.blogspot.com/2014/02/marijuana-extracts-and-compounds-kill.html
2019: “Cannabis Found Effective in Fighting Drug-Resistant Bacteria” https://www.courthousenews.com/cannabis-found-effective-in-fighting-drug-resistant-bacteria/
“Cannabis oil kills bacteria better than established antibiotics… providing a possible new weapon in the war on superbugs, according to new research. It offers hope of curing killer infections – including MRSA and pneumonia, say scientists.” https://www.thelondoneconomic.com/lifestyle/cannabis-oil-kills-bacteria-better-than-established-antibiotics/24/06/ 
“CANNABIS COMPOUND COULD BE LATEST WEAPON IN WAR AGAINST SUPERBUGS”
“Marijuana skin cream kills superbugs, says Botanix” https://stockhead.com.au/health/marijuana-skin-cream-kills-superbugs-says-botanix/
“Botanix’s CBD-based product destroys superbug skin infections in another ‘world first’” https://smallcaps.com.au/botanix-cbd-based-product-destroys-skin-superbug-infections/
“Compound in cannabis found to be ‘promising’ new antibiotic that does not lose its effectiveness with use” https://www.kelownanow.com/watercooler/news/news/Cannabis/Compound_in_cannabis_found_to_be_promising_new_antibiotic_that_does_not_lose_its_effectiveness_with_use/
Image may contain: plant and text
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol, cannabinol and their combinations act as peripheral analgesics in a rat model of myofascial pain.

Archives of Oral Biology

“This study investigated whether local intramuscular injection of non-psychoactive cannabinoids, cannabidiol (CBD), cannabinol (CBN), cannabichromene (CBC) and their combinations can decrease nerve growth factor (NGF)-induced masticatory muscle sensitization in female rats.

RESULTS:

In behavioral experiments, CBD (5 mg/ml) or CBN (1 mg/ml) decreased NGF-induced mechanical sensitization. Combinations of CBD/CBN induced a longer-lasting reduction of mechanical sensitization than either compound alone. No significant change in mechanical withdrawal threshold was observed in the contralateral masseter muscles and no impairment of motor function was found with the inverted screen test after any of the treatments. Consistent with behavioral results, CBD (5 mg/ml), CBN (1 mg/ml) and the combination of CBD/CBN (1:1 mg/ml) increased the mechanical threshold of masseter muscle mechanoreceptors. However, combining CBD/CBN (5:1 mg/ml) at a higher ratio reduced the duration of this effect. This may indicate an inhibitory effect of higher concentrations of CBD on CBN.

CONCLUSIONS:

These results suggest that peripheral application of these non-psychoactive cannabinoids may provide analgesic relief for chronic muscle pain disorders such as temporomandibular disorders and fibromyalgia without central side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/31158702

https://www.sciencedirect.com/science/article/pii/S0003996919302249?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Detection and Quantification of Cannabinoids in Extracts of Cannabis sativa Roots Using LC-MS/MS.

 

“A liquid chromatography-tandem mass spectrometry single-laboratory validation was performed for the detection and quantification of the 10 major cannabinoids of cannabis, namely, (-)-trans9-tetrahydrocannabinol, cannabidiol, cannabigerol, cannabichromene, tetrahydrocannabivarian, cannabinol, (-)-trans8-tetrahydrocannabinol, cannabidiolic acid, cannabigerolic acid, and Δ9-tetrahydrocannabinolic acid-A, in the root extract of Cannabis sativa. Acetonitrile : methanol (80 : 20, v/v) was used for extraction; d3-cannabidiol and d3– tetrahydrocannabinol were used as the internal standards. All 10 cannabinoids showed a good regression relationship with r2 > 0.99. The validated method is simple, sensitive, and reproducible and is therefore suitable for the detection and quantification of these cannabinoids in extracts of cannabis roots. To our knowledge, this is the first report for the quantification of cannabinoids in cannabis roots.”

https://www.ncbi.nlm.nih.gov/pubmed/29359294

https://www.thieme-connect.de/DOI/DOI?10.1055/s-0044-100798

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Phytochemistry of Cannabis sativa L.

Image result for University of Mississippi

“Cannabis (Cannabis sativa, or hemp) and its constituents-in particular the cannabinoids-have been the focus of extensive chemical and biological research for almost half a century since the discovery of the chemical structure of its major active constituent, Δ9-tetrahydrocannabinol (Δ9-THC).

The plant’s behavioral and psychotropic effects are attributed to its content of this class of compounds, the cannabinoids, primarily Δ9-THC, which is produced mainly in the leaves and flower buds of the plant.

Besides Δ9-THC, there are also non-psychoactive cannabinoids with several medicinal functions, such as cannabidiol (CBD), cannabichromene (CBC), and (CBG), along with other non-cannabinoid constituents belonging to diverse classes of natural products.

Today, more than 560 constituents have been identified in cannabis.

The recent discoveries of the medicinal properties of cannabis and the cannabinoids in addition to their potential applications in the treatment of a number of serious illnesses, such as glaucoma, depression, neuralgia, multiple sclerosis, Alzheimer’s, and alleviation of symptoms of HIV/AIDS and cancer, have given momentum to the quest for further understanding the chemistry, biology, and medicinal properties of this plant.

This contribution presents an overview of the botany, cultivation aspects, and the phytochemistry of cannabis and its chemical constituents. Particular emphasis is placed on the newly-identified/isolated compounds. In addition, techniques for isolation of cannabis constituents and analytical methods used for qualitative and quantitative analysis of cannabis and its products are also reviewed.”

https://www.ncbi.nlm.nih.gov/pubmed/28120229

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Phytocannabinoids: a unified critical inventory.

Image result for natural product reports

“Cannabis sativa L. is a prolific, but not exclusive, producer of a diverse group of isoprenylated resorcinyl polyketides collectively known as phytocannabinoids.

The modular nature of the pathways that merge into the phytocannabinoid chemotype translates in differences in the nature of the resorcinyl side-chain and the degree of oligomerization of the isoprenyl residue, making the definition of phytocannabinoid elusive from a structural standpoint.

A biogenetic definition is therefore proposed, splitting the phytocannabinoid chemotype into an alkyl- and a β-aralklyl version, and discussing the relationships between phytocannabinoids from different sources (higher plants, liverworts, fungi).

The startling diversity of cannabis phytocannabinoids might be, at least in part, the result of non-enzymatic transformations induced by heat, light, and atmospheric oxygen on a limited set of major constituents (CBG, CBD, Δ9-THC and CBC and their corresponding acidic versions), whose degradation is detailed to emphasize this possibility.

The diversity of metabotropic (cannabinoid receptors), ionotropic (thermos-TRPs), and transcription factors (PPARs) targeted by phytocannabinoids is discussed. The integrated inventory of these compounds and their biological macromolecular end-points highlights the opportunities that phytocannabinoids offer to access desirable drug-like space beyond the one associated to the narcotic target CB1.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology.

“Cannabinoids, consisting of alkylresorcinol and monoterpene groups, are the unique secondary metabolites that are found only in Cannabis sativa. Tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabichromene (CBC) are well known cannabinoids and their pharmacological properties have been extensively studied. Recently, biosynthetic pathways of these cannabinoids have been successfully established. Several biosynthetic enzymes including geranylpyrophosphate:olivetolate geranyltransferase, tetrahydrocannabinolic acid (THCA) synthase, cannabidiolic acid (CBDA) synthase and cannabichromenic acid (CBCA) synthase have been purified from young rapidly expanding leaves of C. sativa. In addition, molecular cloning, characterization and localization of THCA synthase have been recently reported. THCA and cannabigerolic acid (CBGA), its substrate, were shown to be apoptosis-inducing agents that might play a role in plant defense. Transgenic tobacco hairy roots expressing THCA synthase can produce THCA upon feeding of CBGA. These results open the way for biotechnological production of cannabinoids in the future.”

http://www.ncbi.nlm.nih.gov/pubmed/17691992

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Thermal isomerization of cannabinoid analogues.

“Thermal isomerization of CBC(an) to THC(an) [nonaromatic analogues of plant cannabinoids cannabichromene (CBC) and Delta(1)-tetrahydrocannabinol (THC), respectively] is predicted in silico and demonstrated experimentally. Density functional theory calculations support a similar isomerization mechanism for the corresponding plant cannabinoids. Docking studies suggest that THC(an), although nonaromatic, has a CB(1) receptor binding affinity similar to that of natural THC.”

http://www.ncbi.nlm.nih.gov/pubmed/19919138

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabichromene and tetrahydrocannabinol determination in mouse blood and brain by gas chromatography-mass spectrometry.

“Cannabichromene (CBC) is a phytocannabinoid, the second most abundant cannabinoid quantitatively in marijuana. CBC has been shown to produce antinociception and anti-inflammatory effects…”

 http://www.ncbi.nlm.nih.gov/pubmed/21871159

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous