Emerging role of cannabinoids and synthetic cannabinoid receptor 1/cannabinoid receptor 2 receptor agonists in cancer treatment and chemotherapy-associated cancer management

Journal of Cancer Research and Therapeutics“Cannabis was extensively utilized for its medicinal properties till the 19th century. A steep decline in its medicinal usage was observed later due to its emergence as an illegal recreational drug.

Advances in technology and scientific findings led to the discovery of delta-9-tetrahydrocannabinol (THC), the primary psychoactive compound of cannabis, that further led to the discovery of endogenous cannabinoids system consisting of G-protein-coupled receptors – cannabinoid receptor 1 and cannabinoid receptor 2 along with their ligands, mainly anandamide and 2-arachidonoylglycerol.  Endocannabinoid (EC) is shown to be a modulator not only for physiological functions but also for the immune system, endocrine network, and central nervous system.

Medicinal research and meta-data analysis over the last few decades have shown a significant potential for both THC and cannabidiol (CBD) to exert palliative effects. People suffering from many forms of advanced stages of cancers undergo chemotherapy-induced nausea and vomiting followed by severe and chronic neuropathic pain and weight loss.

THC and CBD exhibit effective analgesic, anxiolytic, and appetite-stimulating effect on patients suffering from cancer. Drugs currently available in the market to treat such chemotherapy-induced cancer-related ailments are Sativex (GW Pharmaceutical), Dronabinol (Unimed Pharmaceuticals), and Nabilone (Valeant Pharmaceuticals).

Apart from exerting palliative effects, THC also shows promising role in the treatment of cancer growth, neurodegenerative diseases (multiple sclerosis and Alzheimer’s disease), and alcohol addiction and hence should be exploited for potential benefits.

The current review discusses the nature and role of CB receptors, specific applications of cannabinoids, and major studies that have assessed the role of cannabinoids in cancer management.

Specific targeting of cannabinoid receptors can be used to manage severe side effects during chemotherapy, palliative care, and overall cancer management. Furthermore, research evidences on cannabinoids have suggested tumor inhibiting and suppressing properties which warrant reconsidering legality of the substance.

Studies on CB1 and CB2 receptors, in case of cancers, have demonstrated the psychoactive constituents of cannabinoids to be potent against tumor growth.

Interestingly, studies have also shown that activation of CB1 and CB2 cannabinoid receptors by their respective synthetic agonists tends to limit human cancer cell growth, suggesting the role of the endocannabinoid system as a novel target for treatment of cancers.

Further explorations are required to exploit cannabinoids for an effective cancer management.”

http://www.cancerjournal.net/preprintarticle.asp?id=263538

“Could Cannabis Kill Cancer Cells? A New Study Looks Promising”  https://www.portlandmercury.com/blogtown/2019/08/15/26977361/could-cannabis-kill-cancer-cells-a-new-study-looks-promising

“Study Reviews How Marijuana Compounds Inhibit Tumor Growth And Kill Cancer Cells” https://www.marijuanamoment.net/study-reviews-how-marijuana-compounds-inhibit-tumor-growth-and-kill-cancer-cells/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Terpenes in Cannabis sativa – From plant genome to humans.

Plant Science“Cannabis sativa (cannabis) produces a resin that is valued for its psychoactive and medicinal properties.

Despite being the foundation of a multi-billion dollar global industry, scientific knowledge and research on cannabis is lagging behind compared to other high-value crops. This is largely due to legal restrictions that have prevented many researchers from studying cannabis, its products, and their effects in humans.

Cannabis resin contains hundreds of different terpene and cannabinoid metabolites.

Our understanding of the genomic and biosynthetic systems of these metabolites in cannabis, and the factors that affect their variability, is rudimentary. As a consequence, there is concern about lack of consistency with regard to the terpene and cannabinoid composition of different cannabis ‘strains’.

Likewise, claims of some of the medicinal properties attributed to cannabis metabolites would benefit from thorough scientific validation.”

https://www.ncbi.nlm.nih.gov/pubmed/31084880

https://www.sciencedirect.com/science/article/pii/S0168945219301190?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Pharmacology of Medical Cannabis.

 “The Cannabis plant has been used for many of years as a medicinal agent in the relief of pain and seizures. It contains approximately 540 natural compounds including more than 100 that have been identified as phytocannabinoids due to their shared chemical structure. The predominant psychotropic component is Δ9-tetrahydrocannabinol (Δ9-THC), while the major non-psychoactive ingredient is cannabidiol (CBD). These compounds have been shown to be partial agonists or antagonists at the prototypical cannabinoid receptors, CB1 and CB2. The therapeutic actions of Δ9-THC and CBD include an ability to act as analgesics, anti-emetics, anti-inflammatory agents, anti-seizure compounds and as protective agents in neurodegeneration. However, there is a lack of well-controlled, double blind, randomized clinical trials to provide clarity on the efficacy of either Δ9-THC or CBD as therapeutics. Moreover, the safety concerns regarding the unwanted side effects of Δ9-THC as a psychoactive agent preclude its widespread use in the clinic. The legalization of cannabis for medicinal purposes and for recreational use in some regions will allow for much needed research on the pharmacokinetics and pharmocology of medical cannabis. This brief review focuses on the use of cannabis as a medicinal agent in the treatment of pain, epilepsy and neurodegenerative diseases. Despite the paucity of information, attention is paid to the mechanisms by which medical cannabis may act to relieve pain and seizures.”

https://www.ncbi.nlm.nih.gov/pubmed/31332738

https://link.springer.com/chapter/10.1007%2F978-3-030-21737-2_8

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid Interactions with Proteins: Insights from Structural Studies.

 “Cannabinoids have been widely used for recreational and medicinal purposes. The increasing legalization of cannabinoid use and the growing success in Medicinal Chemistry of cannabinoids have fueled recent interest in cannabinoid-sensing sites in receptor proteins. Here, we review structural data from high-resolution cryo-EM and crystallography studies that depict phytocannabinoid, endocannabinoid, and synthetic cannabinoid molecules bound to various proteins. The latter include antigen-binding fragment (Fab), cellular retinol binding protein 2 (CRBP2), fatty acid-binding protein 5 (FABP5), peroxisome proliferator-activated receptor γ (PPAR γ), and cannabinoid receptor types 1 and 2 (CB1 and CB2). Cannabinoid-protein complexes reveal the complex design of cannabinoid binding sites that are usually presented by conventional ligand-binding pockets on respective proteins. However, subtle differences in cannabinoid interaction with amino acids within the binding pocket often result in diverse consequences for protein function. The rapid increase in available structural data on cannabinoid-protein interactions will ultimately direct drug design efforts toward rendering highly potent cannabinoid-related pharmacotherapies that are devoid of side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/31332733

https://link.springer.com/chapter/10.1007%2F978-3-030-21737-2_3

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Acute and short-term administrations of delta-9-tetrahydrocannabinol modulate major gut metabolomic regulatory pathways in C57BL/6 mice.

Scientific Reports “Delta-9-tetrahydrocannabinol (THC) is the primary psychoactive compound in Cannabis, which is studied extensively for its medicinal value. A central gap in the science is the underlying mechanisms surrounding THC’s therapeutic effects and the role of gut metabolite profiles. Using a mass-spectrometry based metabolomics, we show here that intraperitoneal injection of THC in C57BL/6 mice modulates metabolic profiles that have previously been identified as integral to health. Specifically, we investigated the effects of acute (single THC injection denoted here as ‘1X’) and short -term (five THC injections on alternate days denoted as ‘5X’) THC administration on fecal and intestinal tissue metabolite profiles. Results are consistent with the hypothesis that THC administration alters host metabolism by targeting two prominent lipid metabolism pathways: glycerophospholipid metabolism and fatty acid biosynthesis.”

https://www.ncbi.nlm.nih.gov/pubmed/31324830

https://www.nature.com/articles/s41598-019-46478-0

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Model-based analysis on systemic availability of coadministered cannabinoids after controlled vaporised administration.

Publication cover image

“The most important two medicinal cannabinoids are Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD).

The results observed in this study are useful for guiding future pharmacokinetic studies of medicinal cannabinoids, and for development of dosing guidelines for medical use of cannabis in the ‘real world’ setting.”

https://www.ncbi.nlm.nih.gov/pubmed/31264294

https://onlinelibrary.wiley.com/doi/abs/10.1111/imj.14415

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabis and cannabinoids on treatment of inflammation: a patent review

The inflammatory process is a physiological response to a vast number harmful stimulus that takes place in order to restore homeostasis. Many drugs used in pharmacotherapy are effective to control inflammatory responses, however there is a range of adverse effects attributed to steroidal and non-steroidal anti-inflammatory drugs (NSAIDs).

In this sense, herbal medicine and derivatives gain more adepts because of their effectiveness and safety, showing the importance of medicinal plants, especially the Cannabis genus and the cannabinoid derivatives.
The aim of this prospection was to identify data related to patents involving Cannabis and cannabinoids for the treatment of inflammation.
A total of 370 patents were found, of which 17 patents met the inclusion criteria.
Although reports show synergistic effects of the plant components, patents involving Cannabis and cannabinoids focus on isolated substances (CBD e THC). However, patents related to Cannabis and cannabinoids are promising for future use of the plant or its derivatives on the treatment of inflammation.”
“Cannabis-based drugs have been shown to be effective in inflammatory diseases.” https://www.ncbi.nlm.nih.gov/pubmed/29110674
“Cannabinoid-based drugs as anti-inflammatory therapeutics.” http://www.ncbi.nlm.nih.gov/pubmed/15864274
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Omega-3 Endocannabinoid-Epoxides Are Novel Anti-inflammatory and Anti-Pain Lipid Metabolites (FS15-01-19).

Issue Cover“Omega-3 fatty acid derived endocannabinoids are metabolized by cytochrome P450s to form bioactive endocannabinoid epoxides that are anti-inflammatory.

RESULTS:

Cannabinoids are found in marijuana and also are produced naturally in the body from ω-3 and ω-6 fatty acids. Exocannabinoids in marijuana, are known to be responsible for some of its euphoric effects, but they also exhibit anti-inflammatory benefits. Our study revealed a cascade of enzymatic reactions that convert ω-3 fatty acids into anti-inflammatory endocannabinoid epoxides that act through the same receptors in the body as marijuana (PNAS 2017).

Endocannabinoids are ligands for cannabinoidreceptor 1 and 2 (CB1 and CB2). CB1 receptor agonists exhibit psychotropic properties while CB2 receptor agonists have anti-inflammatory effects. Consequently, there is a strong interest in the discovery of CB2 selective agonists to mitigate inflammatory pathologies. The work details the discovery and characterization of naturally occurring ω-3-derived endocannabinoid epoxides that are formed via enzymatic oxidation of ω-3 endocannabinoids by cytochrome P450 epoxygenases. These dual functional ω-3 endocannabinoid epoxides exhibit preference towards binding to CB2 receptor and are anti-inflammatory and vasodilatory and reciprocally modulate platelet aggregation. Some of the other regioisomers of ω-3 endocannabinoid epoxides are partial agonists of CB1 and stop tumor cell metastasis (J. Med. Chem 2018). By virtue of their physiological properties, they are expected to play important roles in neuroinflammation and pain.

CONCLUSIONS:

This finding demonstrates how omega-3 fatty acids can produce some of the same medicinal qualities as marijuana, but without a psychotropic effect. In summary, the ω-3 endocannabinoid epoxides are found at concentrations comparable to those of other endocannabinoids and are expected to play critical roles during inflammation in vivo.”

https://www.ncbi.nlm.nih.gov/pubmed/31223777

https://academic.oup.com/cdn/article/3/Supplement_1/nzz031.FS15-01-19/5518049

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

A systematic review of cannabidiol dosing in clinical populations.

British Journal of Clinical Pharmacology banner“Cannabidiol is a cannabis-derived medicinal product with potential application in a wide-variety of contexts, however its effective dose in different disease states remains unclear. This review aimed to investigate what doses have been applied in clinical populations, in order to understand the active range of cannabidiol in a variety of medical contexts.

RESULTS:

A total of 1038 articles were retrieved, of which 35 studies met inclusion criteria covering 13 medical contexts. 23 studies reported a significant improvement in primary outcomes (e.g. psychotic symptoms, anxiety, seizures), with doses ranging between <1 – 50 mg/Kg/day. Plasma concentrations were not provided in any publication. Cannabidiol was reported as well tolerated and epilepsy was the most frequently studied medical condition, with all 11 studies demonstrating positive effects of cannabidiol on reducing seizure frequency or severity (average 15 mg/Kg/day within randomised controlled trials). There was no signal of positive activity of CBD in small randomised controlled trials (range n=6-62) assessing diabetes, Crohn’s disease, ocular hypertension, fatty liver disease or chronic pain. However, low doses (average 2.4 mg/Kg/day) were used in these studies.

CONCLUSION:

This review highlights cannabidiol has a potential wide range of activity in several pathologies. Pharmacokinetic studies as well as conclusive phase III trials to elucidate effective plasma concentrations within medical contexts are severely lacking and highly encouraged.”

https://www.ncbi.nlm.nih.gov/pubmed/31222854

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bcp.14038

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Biosynthesis of cannflavins A and B from Cannabis sativa L.

Phytochemistry

“In addition to the psychoactive constituents that are typically associated with Cannabis sativa L., there exist numerous other specialized metabolites in this plant that are believed to contribute to its medicinal versatility. This study focused on two such compounds, known as cannflavin A and cannflavin B. These prenylated flavonoids specifically accumulate in C. sativa and are known to exhibit potent anti-inflammatory activity in various animal cell models. However, almost nothing is known about their biosynthesis. Using a combination of phylogenomic and biochemical approaches, an aromatic prenyltransferase from C. sativa (CsPT3) was identified that catalyzes the regiospecific addition of either geranyl diphosphate (GPP) or dimethylallyl diphosphate (DMAPP) to the methylated flavone, chrysoeriol, to produce cannflavins A and B, respectively. Further evidence is presented for an O-methyltransferase (CsOMT21) encoded within the C. sativa genome that specifically converts the widespread plant flavone known as luteolin to chrysoeriol, both of which accumulate in C. sativa. These results therefore imply the following reaction sequence for cannflavins A and B biosynthesis: luteolin ► chrysoeriol ► cannflavin A and cannflavin B. Taken together, the identification of these two unique enzymes represent a branch point from the general flavonoid pathway in C. sativa and offer a tractable route towards metabolic engineering strategies that are designed to produce these two medicinally relevant Cannabis compounds.”

https://www.ncbi.nlm.nih.gov/pubmed/31151063

https://www.sciencedirect.com/science/article/pii/S0031942218303819?via%3Dihub

“U of G Researchers First to Unlock Access to Pain Relief Potential of Cannabis”  https://news.uoguelph.ca/2019/07/u-of-g%E2%80%AFresearchers-first-to-unlock-access-to-pain%E2%80%AFrelief%E2%80%AFpotential-of-cannabis%E2%80%AF/

“Scientists unlock the secrets of marijuana’s pain-relief potential, study says” HTTPS://WWW.NEWSOBSERVER.COM/NEWS/NATION-WORLD/NATIONAL/ARTICLE233045517.HTML

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous