Anticonvulsive effects of endocannabinoids; an investigation to determine the role of regulatory components of endocannabinoid metabolism in the Pentylenetetrazol induced tonic- clonic seizures.

Metabolic Brain Disease

“2-Arachidonoylglycerol (2-AG) and anandamide are two major endocannabinoids produced, released and eliminated by metabolic pathways.

Anticonvulsive effect of 2-AG and CB1 receptor is well-established. Herein, we designed to investigate the anticonvulsive influence of key components of the 2-AG and anandamide metabolism.

It seems extracellular accumulation of 2-AG or anandamide has anticonvulsive effect through the CB1 receptor, while intracellular anandamide accumulation is proconvulsive through TRPV1.”

https://www.ncbi.nlm.nih.gov/pubmed/29504066

https://link.springer.com/article/10.1007%2Fs11011-018-0195-5

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Increased Renal 2-Arachidonoylglycerol Level Is Associated with Improved Renal Function in a Mouse Model of Acute Kidney Injury.

Mary Ann Liebert, Inc. publishers

“Acute kidney injury (AKI) is associated with a significantly increased risk of morbidity and mortality. Ischemia-reperfusion injury (IRI) is a major cause of AKI. In this study, we investigated the role of the endocannabinoid (EC) system in renal IRI using a well-established mouse model.

Results: Renal IRI was associated with significantly increased serum BUN and creatinine, increased tubular damage score, increased expression of renal markers of inflammation and oxidative stress and elevated renal 2-AG content. Pretreatment with JZL184 was associated with a significant increase in renal 2-AG content and there was also improved serum BUN, creatinine and tubular damage score. However, renal expression of inflammation and oxidative stress markers remained unchanged.

Conclusions: This is the first report documenting that renal IRI is associated with an increase in kidney 2-AG content. Further enhancement of 2-AG levels using JZL184 improved indices of renal function and histology, but did not lower renal expression of markers of inflammation and oxidative stress. Further studies are needed to determine the mechanisms responsible for the effects observed and the potential value of 2-AG as a therapeutic target in renal IRI.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Alleviation of Neuropathology by Inhibition of Monoacylglycerol Lipase in APP Transgenic Mice Lacking CB2 Receptors.

Molecular Neurobiology

“Inhibition of monoacylglycerol lipase (MAGL), the primary enzyme that hydrolyzes the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain, produces profound anti-inflammatory and neuroprotective effects and improves synaptic and cognitive functions in animal models of Alzheimer’s disease (AD). However, the molecular mechanisms underlying the beneficial effects produced by inhibition of 2-AG metabolism are still not clear.

The cannabinoid receptor type 2 (CB2R) has been thought to be a therapeutic target for AD. Here, we provide evidence, however, that CB2R does not play a role in ameliorating AD neuropathology produced by inactivation of MAGL in 5XFAD APP transgenic mice, an animal model of AD.

Our results suggest that CB2R is not required in ameliorating neuropathology and preventing cognitive decline by inhibition of 2-AG metabolism in AD model animals.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Monoglyceride lipase as a drug target: At the crossroads of arachidonic acid metabolism and endocannabinoid signaling.

Image result for Pharmacol Ther.

“Monoglyerides (MGs) are short-lived, intermediary lipids deriving from the degradation of phospho- and neutral lipids, and monoglyceride lipase (MGL), also designated as monoacylglycerol lipase (MAGL), is the major enzyme catalyzing the hydrolysis of MGs into glycerol and fatty acids. This distinct function enables MGL to regulate a number of physiological and pathophysiological processes since both MGs and fatty acids can act as signaling lipids or precursors thereof. The most prominent MG species acting as signaling lipid is 2-arachidonoylglycerol (2-AG) which is the most abundant endogenous agonist of cannabinoid receptors in the body. Importantly, recent observations demonstrate that 2-AG represents a quantitatively important source for arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. Accordingly, MGL-mediated 2-AG degradation affects lipid signaling by cannabinoid receptor-dependent and independent mechanisms. Recent genetic and pharmacological studies gave important insights into MGL’s role in (patho-)physiological processes, and the enzyme is now considered as a promising drug target for a number of disorders including cancer, neurodegenerative and inflammatory diseases. This review summarizes the basics of MG (2-AG) metabolism and provides an overview on the therapeutic potential of MGL.”

https://www.ncbi.nlm.nih.gov/pubmed/28213089

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Application of carbon nanotubes as the carriers of the cannabinoid, 2-arachidonoylglycerol: Towards a novel treatment strategy in colitis.

Image result for life sciences journal

“Treatment of colitis has remained a major clinical challenge.

The cannabinoid, 2-arachidonoyglycerol (2-AG), has shown beneficial effects in colitis, however, poor solubility or rapid hydrolysis may limit its efficiency. According to the high biocompatibility of carbon nanotubes (CNTs) and their ability for controlled drug delivery, we aimed to prepare multi-walled CNTs-2-AG (MWCNTs-2-AG) complex in order to improve the pharmacological profile of 2-AG and evaluate the therapeutic potential of this nanocomplex in a rat model of colitis.

Aminated MWCNTs and MWCNTs-2-AG complex exhibited significantly lower cytotoxicity than acidified MWCNTs. Once daily intrarectal application of MWCNTs-2-AG complex (containing 2mg/kg of 2-AG) 2days before and 8days after the induction of colitis effectively reduced the macroscopic and microscopic injuries, malondialdehyde, tumour necrosis factor-α, and interlukin-1β concentrations, and myeloperoxidase activity. While, free 2-AG (2mg/kg), and acidified or aminated MWCNTs showed no beneficial effects.

SIGNIFICANCE:

Amino-functionalized MWCNTs appear as the suitable carriers for 2-AG which provide a sustained concentration for this cannabinoid leading to the promising therapeutic effects in the experimental colitis.”

https://www.ncbi.nlm.nih.gov/pubmed/27888115

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

[The endocannabinoid system and bone].

Image result for pubmed

“Recent studies suggest an important role for the skeletal endocannabinoid system in the regulation of bone mass in both physiological and pathological conditions. Both major endocannabinoids (anandamid and 2-arachidonoylglycerol), endocannabinoid receptors – CB1-receptor (CB1R) a CB2-receptor (CB2R) and the endocannabinoid metabolizing enzymes are present or expressed in osteoblasts and osteoclasts. Previous studies identified multiple risk and protective variants of CNR2 gene dealing with the relationship to bone density and/or osteoporosis. Selective CB1R/ CB2R-inverse agonists/antagonists and CB2R-inverse agonists/antagonists are candidates for prevention of bone mass loss and combined antiresorptive and anabolic therapy for osteoporosis.”

https://www.ncbi.nlm.nih.gov/pubmed/27734700

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anandamide Suppresses Proinflammatory T Cell Responses In Vitro through Type-1 Cannabinoid Receptor-Mediated mTOR Inhibition in Human Keratinocytes.

Image result for The Journal of Immunology

“The endocannabinoid system comprises cannabinoid receptors 1 and 2 (CB1 and CB2), their endogenous ligands, anandamide (AEA) and 2-arachidonoylglycerol, and metabolic enzymes of these ligands.

The endocannabinoid system has recently been implicated in the regulation of various pathophysiological processes of the skin that include immune competence and/or tolerance of keratinocytes, the disruption of which might promote the development of skin diseases.

Recent evidence showed that CB1 in keratinocytes limits the secretion of proinflammatory chemokines, suggesting that this receptor might also regulate T cell dependent inflammatory diseases of the skin.

In this article, we sought to investigate the cytokine profile of IFN-γ-activated keratinocytes, and found that CB1 activation by AEA suppressed production and release of signature TH1- and TH17-polarizing cytokines, IL-12 and IL-23, respectively. We also set up cocultures between a conditioned medium of treated keratinocytes and naive T cells to disclose the molecular details that regulate the activation of highly proinflammatory TH1 and TH17 cells.

AEA-treated keratinocytes showed reduced an induction of IFN-γ-producing TH1 and IL-17-producing TH17 cells, and these effects were reverted by pharmacological inhibition of CB1.

Further analyses identified mammalian target of rapamycin as a proinflammatory signaling pathway regulated by CB1, able to promote either IL-12 and IL-23 release from keratinocytes or TH1 and TH17 polarization.

Taken together, these findings demonstrate that AEA suppresses highly pathogenic T cell subsets through CB1-mediated mammalian target of rapamycin inhibition in human keratinocytes.

Thus, it can be speculated that the latter pathway might be beneficial to the physiological function of the skin, and can be targeted toward inflammation-related skin diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/27694494

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Important role of endocannabinoid signaling in the development of functional vision and locomotion in zebrafish.

Image result for FASEB J.

“The developmental role of the endocannabinoid system still remains to be fully understood.

Here, we report the presence of a complete endocannabinoid system during zebrafish development and show that the genes that code for enzymes that catalyze the anabolism and catabolism (mgll and dagla) of the endocannabinoid, 2-AG (2-arachidonoylglycerol), as well as 2-AG main receptor in the brain, cannabinoid receptor type 1, are coexpressed in defined regions of axonal growth.

By using morpholino-induced transient knockdown of the zebrafish Daglα homolog and its pharmacologic rescue, we suggest that synthesis of 2-AG is implicated in the control of axon formation in the midbrain-hindbrain region and that animals that lack Daglα display abnormal physiological behaviors in tests that measure stereotyped movement and motion perception.

Our results suggest that the well-established role for 2-AG in axonal outgrowth has implications for the control of vision and movement in zebrafish and, thus, is likely common to all vertebrates.”

http://www.ncbi.nlm.nih.gov/pubmed/27623930

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid system in the skin – a possible target for future therapies in dermatology.

“Cannabinoids and their derivatives are group of more than 60 biologically active chemical agents, which have been used in natural medicine for centuries.

The major agent of exogenous cannabinoids is Delta(9)-tetrahydrocannabinol (Delta(9)-THC), natural psychoactive ingredient of marijuana.

Recent discoveries of endogenous cannabinoids (e.g. arachidonoylethanolamide, 2-arachidonoylglycerol or palmithyloethanolamide) and their receptors initiated discussion on the role of cannabinoid system in physiological conditions as well as in various diseases.

Based on the current knowledge, it could be stated that cannabinoids are important mediators in the skin, however their role have not been well elucidated yet.

In our review, we summarized the current knowledge about the significant role of the cannabinoid system in the cutaneous physiology and pathology, pointing out possible future therapeutic targets.”

http://www.ncbi.nlm.nih.gov/pubmed/19664006

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Crucial Roles of the Endocannabinoid 2-Arachidonoylglycerol in the Suppression of Epileptic Seizures.

“Endocannabinoid signaling is considered to suppress excessive excitability of neural circuits and to protect the brain from seizures. However, the precise mechanisms of this effect are poorly understood.

Here, we report that 2-arachidonoylglycerol (2-AG), one of the two major endocannabinoids, is crucial for suppressing seizures.

We found that kainate-induced seizures in mice lacking the 2-AG synthesizing enzyme, diacylglycerol lipase α, were much more severe compared with those in cannabinoid CB1 receptor knockout mice and were comparable to those in mice lacking both CB1– and CB2-receptor-mediated signaling.

In the dentate gyrus, 2-AG suppressed excitatory input around the inner and middle molecular layers through CB1 and presumably CB2 receptors, respectively.

This 2-AG-mediated suppression contributed to decreased granule cell excitability and the dampening of seizures. Furthermore, lack of 2-AG signaling enhanced kindling epileptogenesis and spontaneous seizures after kainate-induced status epilepticus.

These results highlight critical roles of 2-AG signaling in the suppression of epileptic seizures.”

http://www.ncbi.nlm.nih.gov/pubmed/27452464

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous