From “Azalla” to Anandamide: Distilling the Therapeutic Potential of Cannabinoids

Biological Psychiatry Home

“Cannabis has held a unique place in the hearts and minds of people since time immemorial: some have exalted its properties and considered it to be sacred; others have reviled it, considering it a root cause of social evil.

The Assyrians, who lived about 3000 years ago, documented the effects of cannabis on clay tablets. They referred to the plant according to its various uses: as “azalla,” when used as a medical agent; as hemp; and as “gan-zi-gun-nu”—“the drug that takes away the mind”   These seemingly contradictory properties—a substance that can be both a therapeutic agent and a corrupting psychoactive drug—have continued to puzzle us over the ensuing centuries.

As early as the 11th century, excessive cannabis use was suggested to be a cause of “moral degeneracy.”  On the other hand, the ostensible therapeutic value of cannabis was documented extensively in the early 19th century by Sir William B. O’Shaughnessy, an Irish physician working in Calcutta, India.

Given the critical role of the endocannabinoid system in modulating anxiety, it is clear that compounds that can modulate this system offer great promise as therapeutic agents for psychiatric disorders. It is therefore not surprising that the concept of medical marijuana is compelling to laypersons, clinicians, and researchers alike.

While there is not yet a robust body of literature supporting any specific psychiatric indication (despite the regulatory approval in some states of medical marijuana for specific psychiatric disorders), active lines of investigation of therapeutic targets within the endocannabinoid system offer hope for better treatment options.

The evidence at present suggests that the question of whether cannabinoids are good or bad is not dichotomous—it is likely both good and bad depending on the context of use, including dose, duration of exposure, and an individual’s genetic vulnerabilities. Therefore, the challenge that remains is to distill the good therapeutic effects of cannabinoids and thus weed out “gan-zi-gun-nu” from “azalla.””

http://www.biologicalpsychiatryjournal.com/article/S0006-3223(17)32207-2/fulltext

 

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Targeting Cannabinoid Signaling in the Immune System: “High”-ly Exciting Questions, Possibilities, and Challenges.

Image result for frontiers in immunology

“It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the “phytocannabinoids” [pCBs; e.g., (-)-trans9-tetrahydrocannabinol (THC), (-)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances [“endocannabinoids” (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.].

These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes.

The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc.

Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and “recreational” marijuana consumption.

Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.”   https://www.ncbi.nlm.nih.gov/pubmed/29176975

“Although, many open questions await to be answered, pharmacological modulation of the (endo)cannabinoid signaling, and restoration of the homeostatic eCB tone of the tissues augur to be very promising future directions in the management of several pathological inflammation-accompanied diseases.”   https://www.frontiersin.org/articles/10.3389/fimmu.2017.01487/full
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Masturbation to Orgasm Stimulates the Release of the Endocannabinoid 2-Arachidonoylglycerol in Humans.

The Journal of Sexual Medicine - Click here to go back to the homepage

“Endocannabinoids are critical for rewarding behaviors such as eating, physical exercise, and social interaction. The role of endocannabinoids in mammalian sexual behavior has been suggested because of the influence of cannabinoid receptor agonists and antagonists on rodent sexual activity. However, the involvement of endocannabinoids in human sexual behavior has not been studied.

AIM:

To investigate plasma endocannabinoid levels before and after masturbation in healthy male and female volunteers.

OUTCOMES:

Plasma levels of the endocannabinoids 2-arachidonoylglycerol (2-AG), anandamide, the endocannabinoid-like lipids oleoyl ethanolamide and palmitoyl ethanolamide, arachidonic acid, and cortisol before and after masturbation to orgasm.

METHODS:

In study 1, endocannabinoid and cortisol levels were measured before and after masturbation to orgasm. In study 2, masturbation to orgasm was compared with a control condition using a single-blinded, randomized, 2-session crossover design.

RESULTS:

In study 1, masturbation to orgasm significantly increased plasma levels of the endocannabinoid 2-AG, whereas anandamide, oleoyl ethanolamide, palmitoyl ethanolamide, arachidonic acid, and cortisol levels were not altered. In study 2, only masturbation to orgasm, not the control condition, led to a significant increase in 2-AG levels. Interestingly, we also found a significant increase of oleoyl ethanolamide after masturbation to orgasm in study 2.

CLINICAL TRANSLATION:

Endocannabinoids might play an important role in the sexual response cycle, leading to possible implications for the understanding and treatment of sexual dysfunctions.

STRENGTHS AND LIMITATIONS:

We found an increase of 2-AG through masturbation to orgasm in 2 studies including a single-blinded randomized design. The exact role of endocannabinoid release as part of the sexual response cycle and the biological significance of the finding should be studied further. Cannabis and other drug use and the attainment of orgasm were self-reported in the present study.

CONCLUSION:

Our data indicate that the endocannabinoid 2-AG is involved in the human sexual response cycle and we hypothesize that 2-AG release plays a role in the rewarding consequences of sexual arousal and orgasm.”

https://www.ncbi.nlm.nih.gov/pubmed/29110806

http://www.jsm.jsexmed.org/article/S1743-6095(17)31443-1/fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Characterization of endocannabinoids and related acylethanolamides in the synovial fluid of dogs with osteoarthritis: a pilot study.

 Image result for bmc veterinary research

“Cannabis-based drugs have been shown to be effective in inflammatory diseases.

A number of endocannabinoids including N- arachidonoylethanolamide (anandamide, AEA) and 2-arachidonyl glycerol (2-AG) with activity at the cannabinoidreceptors (CBR) CBR1 and CBR2, have been identified. Other structurally related endogenous fatty acid compounds such as oleoylethanolamide (OEA) and palmitoyl ethanolamide (PEA) have been identified in biological tissues.

These compounds do not bind to CBR but might be involved in facilitating the actions of directly acting endocannabinoids and thus are commonly termed “entourage” compounds due to their ability to modulate the endocannabinoid system.

The aim of this study was to evaluate the presence of endocannabinoids and entourage compounds in the synovial fluid of dogs with osteoarthritis subjected to arthrotomy of the knee joint. Cytokines and cytology were studied as well.

AEA, 2-AG, OEA and PEA were all present in the synovial fluid of arthritic knees and in the contralateral joints; in addition, a significant increase of OEA and 2AG levels were noted in SF from OA knees when compared to the contralateral joints.

The identification and quantification of endocannabinoids and entourage compounds levels in synovial fluids from dogs with OA of the knee is reported for the first time. Our data are instrumental for future studies involving a greater number of dogs. Cannabinoids represent an emerging and innovative pharmacological tool for the treatment of OA and further studies are warranted to evaluate the effectiveness of cannabinoids in veterinary medicine.”

https://www.ncbi.nlm.nih.gov/pubmed/29110674

“The ECS can be exploited as a potential therapeutic option for OA. We have demonstrated the presence of AEA, 2-AG, OEA and PEA in the SF of dogs with OA. Our data open the avenue to future studies involving a higher number of dogs and aimed at defining the role played by these compounds in OA of the dogs. Both plant-derived and synthetic agonists of CBRs represent an emerging and innovative pharmacological tool for the treatment of OA. ” https://bmcvetres.biomedcentral.com/articles/10.1186/s12917-017-1245-7

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Translating Endocannabinoid Biology into Clinical Practice: Cannabidiol for Stroke Prevention.

Mary Ann Liebert, Inc. publishers

“Introduction: The endocannabinoid system (ECS) regulates functions throughout human physiology, including neuropsychiatric, cardiovascular, autonomic, metabolic, and inflammatory states. The complex cellular interactions regulated by the ECS suggest a potential for vascular disease and stroke prevention by augmenting central nervous and immune cell endocannabinoid signaling.

Discussion: The endocannabinoid N-arachidonoylethanolamine (anandamide) plays a central role in augmenting these processes in cerebrovascular and neurometabolic disease. Furthermore, cannabidiol (CBD), a nonpsychoactive constituent of Cannabis, is an immediate therapeutic candidate both for potentiating endocannabinoid signaling and for acting at multiple pharmacological targets.

Conclusion: This speculative synthesis explores the current state of knowledge of the ECS and suggests CBD as a therapeutic candidate for stroke prevention by exerting favorable augmentation of the homeostatic effects of the ECS and, in turn, improving the metabolic syndrome, while simultaneously stalling the development of atherosclerosis.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Pharmacological augmentation of endocannabinoid signaling reduces the neuroendocrine response to stress.

Psychoneuroendocrinology

“Activation of the hypothalamic-pituitary-adrenal axis (HPA) is critical for survival when the organism is exposed to a stressful stimulus. The endocannabinoid system (ECS) is currently considered an important neuromodulator involved in numerous pathophysiological processes and whose primary function is to maintain homeostasis. In the tissues constituting the HPA axis, all the components of the ECS are present and the activation of this system acts in parallel with changes in the activity of numerous neurotransmitters, including nitric oxide (NO). NO is widely distributed in the brain and adrenal glands and recent studies have shown that free radicals, and in particular NO, may play a crucial role in the regulation of stress response. Our objective was to determine the participation of the endocannabinoid and NOergic systems as probable mediators of the neuroendocrine HPA axis response to a psychophysical acute stress model in the adult male rat. Animals were pre-treated with cannabinoid receptors agonists and antagonists at central and systemic level prior to acute restraint exposure. We also performed in vitro studies incubating adrenal glands in the presence of ACTH and pharmacological compounds that modifies ECS components. Our results showed that the increase in corticosterone observed after acute restraint stress is blocked by anandamide administered at both central and peripheral level. At hypothalamic level both cannabinoid receptors (CB1 and CB2) are involved, while in the adrenal gland, anandamide has a very potent effect in suppressing ACTH-induced corticosterone release that is mainly mediated by vanilloid TRPV1 receptors. We also observed that stress significantly increased hypothalamic mRNA levels of CB1 as well as adrenal mRNA levels of TRPV1 receptor. In addition, anandamide reduced the activity of the nitric oxide synthase enzyme during stress, indicating that the anti-stress action of endocannabinoids may involve a reduction in NO production at hypothalamic and adrenal levels. In conclusion, an endogenous cannabinoid tone maintains the HPA axis in a stable basal state, which is lost with a noxious stimulus. In this case, the ECS dampens the response to stress allowing the recovery of homeostasis. Moreover, our work further contributes to in vitro evidence for a participation of the endocannabinoid system by inhibiting corticosterone release directly at the adrenal gland level.”

https://www.ncbi.nlm.nih.gov/pubmed/29065362

http://www.psyneuen-journal.com/article/S0306-4530(17)30614-5/fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

[Cannabinoid receptor system regulates ion channels and synaptic transmission in retinal cells].

Image result for Sheng Li Xue Bao. journal

“Endocannabinoid receptor system is extensively expressed in the vertebrate retina. There are two types of cannabinoid receptors, CB1 and CB2. Activation of these two receptors by endocannabinoids N-arachidonoylethanolamide (anandamine, AEA) and 2-arachidonyl glycerol (2-AG) regulates multiple neuronal and glial ion channels, thus getting involved in retinal visual information processing. In this review, incorporating our results, we discuss the modulation of cannabinoid CB1 and CB2 receptors on retinal neuronal and glial ion channels and retinal synaptic transmission.”

https://www.ncbi.nlm.nih.gov/pubmed/29063116

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Human bone marrow mesenchymal stem cells secrete endocannabinoids that stimulate in vitro hematopoietic stem cell migration effectively comparable to beta adrenergic stimulation.

Experimental Hematology Home

“Granulocyte Colony-Stimulating Factor (G-CSF) is a well-known hematopoietic stem cell (HSC) mobilizing agent used in both allogeneic and autologous transplantation. However, a proportion of patients or healthy donors fail to mobilize sufficient number of cells. New mobilization agents are therefore needed.

Endocannabinoids (eCBs) are endogenous lipid mediators generated in the brain and peripheral tissues and activate the cannabinoid receptors (CB1, CB2). We suggest that eCBs may act as mobilizers of hematopoietic stem cells (HSC) from the BM under stress conditions as beta adrenergic receptors (Adrβ).

This study demonstrates that bone marrow (BM) mesenchymal stem cells (MSCs) secrete anandamide (AEA) and 2-arachidonylglycerol (2-AG), and peripheral blood (PB) and BM microenvironment contain AEA and 2-AG. 2-AG levels are significantly higher in PB of the G-CSF treated group when compared to BM plasma. BM mononuclear cells (MNCs) and CD34+HSCs, express CB1, CB2 and Adrβ subtypes. CD34+HSCs had higher CB1 and CB2 receptor expression in G-CSF untreated and treated groups when compared to MSCs. MNCs but not MSCs expressed CB1 and CB2 receptors based on qRT-PCR and flow cytometry (FC). AEA and 2-AG stimulated HSC migration was blocked by eCB receptor antagonists in in vitro migration assay.

In conclusion, components of the eCB system and their interaction with Adrβ subtypes were demonstrated on HSCs and MSCs of G-CSF treated and untreated healthy donors in vitro, revealing that eCBs might be potential candidates to enhance or facilitate G-CSF-mediated HSC migration under stress conditions in a clinical setting.”

https://www.ncbi.nlm.nih.gov/pubmed/29030083

http://www.exphem.org/article/S0301-472X(17)30813-5/fulltext

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Human serum albumin: A modulator of cannabinoid drugs.

International Union of Biochemistry and Molecular Biology

“The endocannabinoid system is a unique neuromodulatory system that affects a wide range of biological processes and maintains the homeostasis in all mammal body systems. In recent years, several pharmacological tools to target endocannabinoid neurotransmission have been developed, including direct and indirect cannabinoid agonists and cannabinoid antagonists. Due to their hydrophobic nature, cannabinoid agonists and antagonists need to bind specific transporters to allow their distribution in body fluids. Human serum albumin (HSA), the most abundant plasma protein, is a key determinant of drug pharmacokinetics. As HSA binds both the endocannabinoid anandamide and the active ingredient of Cannabis sativa, Δ-9-tetrahydrocannabinol, we hypothesize that HSA can be the most important carrier of cannabinoid drugs. In silico docking observations strongly indicate that HSA avidly binds the indirect cannabinoid agonists URB597, AM5206, JZL184, JZL195, and AM404, the direct cannabinoid agonists WIN55,212-2 and CP55,940, and the prototypical cannabinoid antagonist/inverse agonist SR141716. Values of the free energy for cannabinoid drugs binding to HSA range between -5.4 kcal mol-1 and -10.9 kcal mol-1 . Accounting for the HSA concentration in vivo (∼ 7.5 × 10-4 M), values of the free energy here determined suggest that the formation of the HSA:cannabinoid drug complexes may occur in vivo. Therefore, HSA appears to be an important determinant for cannabinoid efficacy and may guide the choice of the drug dose regimen to optimize drug efficacy and to avoid drug-related toxicity. ”

https://www.ncbi.nlm.nih.gov/pubmed/28976704

http://onlinelibrary.wiley.com/doi/10.1002/iub.1682/abstract

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid CB1 Discrimination: Effects of Endocannabinoids and Catabolic Enzyme Inhibitors.

Journal of Pharmacology and Experimental Therapeutics

“An improved understanding of the endocannabinoid system has provided new avenues of drug discovery and development toward the management of pain and other behavioral maladies. Exogenous cannabinoid type-1 (CB1) receptor agonists such as Δ9-tetrahydrocannabinol are increasingly utilized for their medicinal actions; however, their utility is constrained by concern regarding abuse-related subjective effects. This has led to growing interest in the clinical benefit of indirectly enhancing the activity of the highly labile endocannabinoids N-arachidonoylethanolamine (anandamide; AEA) and/or 2-arachidonoylglycerol (2-AG) via catabolic enzyme inhibition. The present studies were conducted to determine whether such actions can lead to CB1 agonist-like subjective effects, as reflected in the presence or absence of CB1-related discriminative-stimulus effects in laboratory subjects. Squirrel monkeys (n=8) that discriminated the CB1 full agonist AM4054 (0.01 mg/kg) from vehicle were used to study, first, inhibitors of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MGL) alone or in combination [FAAH (URB597, AM4303); MGL (AM4301); FAAH/MGL (AM4302)] and, second, the ability of the endocannabinoids AEA and 2-AG to produce CB1 agonist-like effects when administered alone or after enzyme inhibition. Results indicate that CB1-related discriminative-stimulus effects were produced by combined, but not selective, inhibition of FAAH and MGL, and that these effects were non-surmountably antagonized by low doses of rimonabant. Additionally, FAAH- or MGL-inhibition revealed CB1-like subjective effects produced by AEA, but not 2-AG. Taken together, the present data suggest that therapeutic effects of combined, but not selective, enhancement of AEA or 2-AG activity via enzyme inhibition may be accompanied by CB1 receptor-mediated subjective effects.”

https://www.ncbi.nlm.nih.gov/pubmed/28947487

http://jpet.aspetjournals.org/content/early/2017/09/25/jpet.117.244392

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous