Bioactivities of alternative protein sources and their potential health benefits.

“Increasing the utilisation of plant proteins is needed to support the production of protein-rich foods that could replace animal proteins in the human diet so as to reduce the strain that intensive animal husbandry poses to the environment. Lupins, quinoa and hempseed are significant sources of energy, high quality proteins, fibre, vitamins and minerals. In addition, they contain compounds such as polyphenols and bioactive peptides that can increase the nutritional value of these plants. From the nutritional standpoint, the right combination of plant proteins can supply sufficient amounts of essential amino acids for human requirements. This review aims at providing an overview of the current knowledge of the nutritional properties, beneficial and non-nutritive compounds, storage proteins, and potential health benefits of lupins, quinoa and hempseed.”

https://www.ncbi.nlm.nih.gov/pubmed/28804797

Hempseed Peptides Exert Hypocholesterolemic Effects with a Statin-Like Mechanism.

Journal of Agricultural and Food Chemistry

“This study had the objective of preparing a hempseed protein hydrolysate and investigating its hypocholesterolemic properties. The hydrolysate was prepared treating a total protein extract with pepsin. Nano HPLC-ESI-MS/MS analysis permitted identifying in total 90 peptides belonging to 33 proteins. In the range 0.1-1.0 mg/mL, it inhibited the catalytic activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoAR) in a dose-dependent manner. HepG2 cells were treated with 0.25, 0.5, and 1.0 mg/mL of the hydrolysate. Immunoblotting detection showed increments in the protein levels of regulatory element binding proteins 2 (SREBP2), low-density lipoprotein receptor (LDLR), and HMGCoAR. However, the parallel activation of the phospho-5′-adenosine monophosphate-activated protein kinase (AMPK) pathway, produced an inactivation of HMGCoAR by phosphorylation. The functional ability of HepG2 cells to uptake extracellular LDL was raised by 50.5 ± 2.7%, 221.5 ± 1.6%, and 109 ± 3.5%, respectively, versus the control at 0.25, 0.5, and 1.0 mg/mL concentrations. Finally, also a raise of the protein level of proprotein convertase subtilisin/kexintype 9 was observed. All of these data suggest that the mechanism of action has some similarity with that of statins.”

https://www.ncbi.nlm.nih.gov/pubmed/28931275

http://pubs.acs.org/doi/abs/10.1021/acs.jafc.7b02742

Acetylcholinesterase inhibitors in Alzheimer’s disease

Image result for Br J Clin Pharmacol

“Alzheimer’s Disease (AD) is the most common single cause of dementia in our ageing society. On full assessment and diagnosis of AD, initiation of an AChe inhibitor is recommended as early as possible, it is important that AChe inhibitor therapy is considered for patients with mild to moderate AD.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2014378/

“Characterization of Lignanamides from Hemp (Cannabis sativa L.) Seed and Their Antioxidant and Acetylcholinesterase Inhibitory Activities. Hempseed is known for its content in fatty acids, proteins and fiber, which contribute to its nutritional value. Lignanamides 2, 7, 9-14 showed good antioxidant activity among which 7, 10 and 13 also inhibited acetylcholinesterase in vitro. The new identified compounds in this study added to the diversity of hempseed composition and the bioassays implied that hempseed, with lignanamides as nutrients, may be a good source of bioactive and protective compounds.” http://www.ncbi.nlm.nih.gov/pubmed/26585089

“The Effects of Hempseed Meal Intake and Linoleic Acid on Drosophila Models of Neurodegenerative Diseases and Hypercholesterolemia. Our results indicate that hempseed meal (HSM) and linoleic acid are potential candidates for the treatment of Alzheimer’s disease (AD) and cardiovascular disease. These results show that HSM may prove of great utility as a health food, with potential for the prevention of AD and cardiovascular disease.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933972/

Proteomic characterization of hempseed (Cannabis Sativa L.).

“Hempseed is an underexploited non-legume protein-rich seed. Although its protein is well-known for its digestibility, essential amino acid composition, and useful techno-functional properties, a comprehensive proteome characterization is still lacking. The objective of this work was to fill this knowledge gap and provide information useful for a better exploitation of this seed in different food products.”

Image 1

“This paper presents an investigation on hempseed proteome.

The experimental approach, based on combinatorial peptide ligand libraries (CPLLs), SDS-PAGE separation, nLC-ESI-MS/MS identification, and database search, permitted identifying in total 181 expressed proteins. This very large number of identifications was achieved by searching in two databases: Cannabis sativa L. (56 gene products identified) and Arabidopsis thaliana(125 gene products identified). By performing a protein-protein association network analysis using the STRING software, it was possible to build the first interactomic map of all detected proteins, characterized by 137 nodes and 410 interactions. Finally, a Gene Ontology analysis of the identified species permitted to classify their molecular functions: the great majority is involved in the seed metabolic processes (41%), responses to stimulus (8%), and biological process (7%).”

http://www.sciencedirect.com/science/article/pii/S1874391916302354

Hempseed as a nutritional resource: An overview

“The seed of Cannabis sativa L. has been an important source of nutrition for thousands of years in Old World cultures. Technically a nut, hempseed typically contains over 30% oil and about 25% protein, with considerable amounts of dietary fiber, vitamins and minerals. Hempseed oil is over 80% in polyunsaturated fatty acids (PUFAs), and is an exceptionally rich source of the two essential fatty acids (EFAs) linoleic acid (18:2 omega-6) and alpha-linolenic acid (18:3 omega-3). The omega-6 to omega-3 ratio (n6/n3) in hempseed oil is normally between 2:1 and 3:1, which is considered to be optimal for human health. Hempseed has been used to treat various disorders for thousands of years in traditional oriental medicine.” http://link.springer.com/article/10.1007%2Fs10681-004-4811-6

The cardiac and haemostatic effects of dietary hempseed

Logo of nutrmeta

“Cannabis sativa L. is an annual plant in the Cannabaceae family. It has been an important source of food, fiber, medicine and psychoactive/religious drug since prehistoric times. Hemp has a botanical relationship to drug/medicinal varieties of Cannabis. However, hempseed no longer contains psychotropic action and instead may provide significant health benefits. Hempseed has an excellent content of omega-3 and omega-6 fatty acids. These compounds have beneficial effects on our cardiovascular health.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2868018/

Characterization of Lignanamides from Hemp (Cannabis sativa L. ) Seed and their Antioxidant and Acetylcholinesterase Inhibitory Activities.

Image result for J Agric Food Chem.

“Hempseed is known for its content in fatty acids, proteins and fiber, which contribute to its nutritional value.

Here we studied the secondary metabolites of hempseed aiming at identifying bioactive compounds that could contribute to its health benefits.

This investigation led to the isolation of four new lignanamides cannabisin M, 2, cannabisin N, 5, cannabisin O, 8 and 3,3′-demethyl-heliotropamide, 10, together with ten known lignanamides, among which 4 was identified for the first time from hempseed.

Structures were established on the basis of NMR, HR-MS, UV, IR as well as by comparison with the literature data.

Lignanamides 2, 7, 9-14 showed good antioxidant activity among which 7, 10 and 13 also inhibited acetylcholinesterase in vitro.

The new identified compounds in this study added to the diversity of hempseed composition and the bioassays implied that hempseed, with lignanamides as nutrients, may be a good source of bioactive and protective compounds.”  http://www.ncbi.nlm.nih.gov/pubmed/26585089

“Alzheimer’s Disease (AD) is the most common single cause of dementia in our ageing society. On full assessment and diagnosis of AD, initiation of an AChe inhibitor is recommended as early as possible, it is important that AChe inhibitor therapy is considered for patients with mild to moderate AD.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2014378/

 “The Effects of Hempseed Meal Intake and Linoleic Acid on Drosophila Models of Neurodegenerative Diseases and Hypercholesterolemia. Our results indicate that hempseed meal (HSM) and linoleic acid are potential candidates for the treatment of Alzheimer’s disease (AD) and cardiovascular disease. These results show that HSM may prove of great utility as a health food, with potential for the prevention of AD and cardiovascular disease.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933972/

Effect of dietary hempseed intake on cardiac ischemia-reperfusion injury.

Regulatory, Integrative and Comparative Physiology

“Polyunsaturated fatty acids (PUFAs) have significant, cardioprotective effects against ischemia.

Hempseed contains a high proportion of the PUFAs linoleic acid (LA) and alpha-linolenic acid (ALA),

Hearts from rats fed a hempseed-supplemented diet exhibited significantly better postischemic recovery of maximal contractile function and enhanced rates of tension development and relaxation during reperfusion than hearts from the other groups.

Our data demonstrate that dietary hempseed can provide significant cardioprotective effects during postischemic reperfusion. This appears to be due to its highly enriched PUFA content.”  http://www.ncbi.nlm.nih.gov/pubmed/17122327

“Polyunsaturated fatty acids (PUFAs) have received special research attention because of their antiarrhythmic and cardioprotective effects in hearts challenged by an ischemia-reperfusion insult. There are two major types of PUFAs: omega-3 and omega-6. Linoleic acid (LA) and α-linolenic acid (ALA) are common examples of an omega-6 and an omega-3 fatty acid, respectively… We have demonstrated for the first time in this study that dietary hempseed represents an effective, unique method to significantly alter the levels of ALA in the heart. We have also demonstrated for the first time that dietary hempseed will confer beneficial cardioprotective effects in hearts subjected to ischemia-reperfusion challenge.”  http://ajpregu.physiology.org/content/292/3/R1198

Potential Oil Yield, Fatty Acid Composition, and Oxidation Stability of the Hempseed Oil from Four Cannabis sativa L. Cultivars.

“The cultivation of four industrial hemp cultivars (Felina 32, Chamaeleon, Uso31, and Finola) was investigated for oil production in the north-east of Italy along two years. The oils of all cultivars resulted in rich amount of linoleic acid (ω-6) and α-linolenic acid (ω-3). Felina 32 and Chamaeleon oils exhibited the highest amount of linoleic acid (59%) and α-linolenic acid (18%). Finola and Uso31 oils resulted in the richest of γ-linolenic acid (5-6%). All hempseed oils presented high oxidation stability and an acceptable initial quality. It is suggested that these oils can be used to produce EFA dietary supplements high in ω-6 and ω-3 of vegetal origin.”

http://www.ncbi.nlm.nih.gov/pubmed/24552275