Phytochemical Aspects and Therapeutic Perspective of Cannabinoids in Cancer Treatment

Cannabis sativa L. – dried pistillate inflorescences and trichomes on their surface. (a) dried pistillate inflorescences (50% of the size); (b) non‐cystolithic trichome; (c) cystolithic trichome; (d) capitate‐sessile trichome; (e) simple bulbous trichome; (f) capitate‐stalked trichome (400×).

“Cannabis sativa L. (Cannabaceae) is one of the first plants cultivated by man and one of the oldest plant sources of fibre, food and remedies.

Cannabinoids comprise the plant‐derived compounds and their synthetic derivatives as well as endogenously produced lipophilic mediators. Phytocannabinoids are terpenophenolic secondary metabolites predominantly produced in CannabissativaL.

The principal active constituent is delta‐9‐tetrahydrocannabinol (THC), which binds to endocannabinoid receptors to exert its pharmacological activity, including psychoactive effect. The other important molecule of current interest is non‐psychotropic cannabidiol (CBD).

Since 1970s, phytocannabinoids have been known for their palliative effects on some cancer‐associated symptoms such as nausea and vomiting reduction, appetite stimulation and pain relief. More recently, these molecules have gained special attention for their role in cancer cell proliferation and death.

A large body of evidence suggests that cannabinoids affect multiple signalling pathways involved in the development of cancer, displaying an anti‐proliferative, proapoptotic, anti‐angiogenic and anti‐metastatic activity on a wide range of cell lines and animal models of cancer.”

https://www.intechopen.com/books/natural-products-and-cancer-drug-discovery/phytochemical-aspects-and-therapeutic-perspective-of-cannabinoids-in-cancer-treatment

Expression of cannabinoid receptors type 1 and type 2 in non-Hodgkin lymphoma: growth inhibition by receptor activation.

“Endogenous and synthetic cannabinoids exert antiproliferative and proapoptotic effects in various types of cancer and in mantle cell lymphoma (MCL).

In this study, we evaluated the expression of cannabinoid receptors type 1 and type 2 (CB1 and CB2) in non-Hodgkin lymphomas of B cell type.

Together, our results suggest that therapies using cannabinoid receptor ligands will have efficiency in reducing tumor burden in malignant lymphoma overexpressing CB1 and CB2.”

http://www.ncbi.nlm.nih.gov/pubmed/18546271

Dronabinol has preferential antileukemic activity in acute lymphoblastic and myeloid leukemia with lymphoid differentiation patterns

Biomed Central logo

“It has been previously demonstrated in several cancer models, that Dronabinol (THC) may have anti-tumor activity – however, controversial data exists for acute leukemia. We have anecdotal evidence that THC may have contributed to disease control in a patient with acute undifferentiated leukemia.

To test this hypothesis, we evaluated the antileukemic efficacy of THC in several leukemia cell lines and native leukemia blasts cultured ex vivo.

We here reveal a novel aspect of dronabinol, a cannabinoid derivative, which displays remarkable antiproliferative as well as proapoptotic efficacy in a distinct leukemia patient cohort – in vitro and in ex vivo native leukemia blasts. It has been previously reported that cannabinoids display anticancer properties. However, due to legal issues the use and exploration of such agents is highly limited in many countries.

Importantly, we demonstrate that antileukemic concentrations are achievable in vivo.

Our study provides rigorous data to support clinical evaluation of THC as a low-toxic therapy option in a well defined subset of acute leukemia patients.”

http://www.ncbi.nlm.nih.gov/pubmed/26775260

http://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-2029-8

Anti Proliferative and Pro Apoptotic Effects of Flavonoid Quercetin Are Mediated by CB1 Receptor in Human Colon Cancer Cell Lines.

“Quercetin, the major constituent of flavonoid and widely present in fruits and vegetables, is an attractive compound for cancer prevention due to its beneficial anti proliferative effects, showing a crucial role in the regulation of apoptosis and cell cycle signaling.

In vitro studies have demonstrated that quercetin specifically influences colon cancer cell proliferation.

Our experiments, using human colon adenocarcinoma cells, confirmed the anti proliferative effect of quercetin and gave intriguing new insight in to the knowledge of the mechanisms involved…

These findings open new perspectives for anticancer therapeutic strategies.”

http://www.ncbi.nlm.nih.gov/pubmed/25893829

“Flavonoid glycosides and cannabinoids from the pollen of Cannabis sativa L.”  http://www.ncbi.nlm.nih.gov/pubmed/15688956

Proapoptotic effect of endocannabinoids in prostate cancer cells.

“Recent evidence shows that derivatives of Cannabis sativa and its analogs may exert a protective effect against different types of oncologic pathologies.

The purpose of the present study was to detect the presence of cannabinoid receptors (CB1 and CB2) on cancer cells with a prostatic origin and to evaluate the effect of the in vitro use of synthetic analogs…

Based on these results, we suggest that endocannabinoids may be a beneficial option for the treatment of prostate cancer that has become nonresponsive to common therapies.”

http://www.ncbi.nlm.nih.gov/pubmed/25606819

http://www.thctotalhealthcare.com/category/prostate-cancer/

COX-2 and PPAR-γ confer cannabidiol-induced apoptosis of human lung cancer cells.

Figure 7.

“Within the last decade, evidence has been accumulated to suggest an antitumorigenic action of cannabinoids elicited via induction of apoptosis and alternative anticarcinogenic mechanisms… cannabidiol has been shown to elicit pronounced proapoptotic or autophagic effects on different types of tumor cells

This study investigates the role of COX-2 and PPAR-γ in cannabidiol’s proapoptotic and tumor-regressive action. In lung cancer cell lines (A549, H460) and primary cells from a patient with lung cancer, cannabidiol elicited decreased viability associated with apoptosis… our data show a novel proapoptotic mechanism of cannabidiol involving initial upregulation of COX-2 and PPAR-γ…

Collectively, our data strengthen the notion that activation of PPAR-γ may present a promising target for lung cancer therapy.

In addition and to the best of our knowledge, this is the first report to provide an inhibitor-proven tumor-regressive mechanism of cannabidiolin vivo as well as a proapoptotic mechanism confirmed by use of primary lung tumor cells.

Against this background and considering recent findings supporting a profound antimetastatic action of cannabidiol, this cannabinoid may represent a promising anticancer drug.”

http://mct.aacrjournals.org/content/12/1/69.long

http://www.thctotalhealthcare.com/category/lung-cancer/

Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress.

“Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues.

Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice.

Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells.

This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.” http://www.ncbi.nlm.nih.gov/pubmed/24281104

“The therapy of gliomas, the most frequent class of malignant primary brain tumors and one of the most aggressive forms of cancer characterized by high invasiveness, a high proliferation rate and rich neovascularization, could benefit from the use of cannabinoids, the active compounds of Cannabis sativa, and their synthetic derivatives. They have been shown to mimic the endogenous substances named “endocannabinoids” that activate specific cannabinoid receptors (CB1 and CB2).

Cannabinoids have been proven to inhibit glioma tumor growth in either in vitro or in vivo models through several cellular pathways such as elevating ceramide levels, modulating PI3K/Akt, MAPK kinases, inducing autophagy and oxidative stress state in glioma cells, thus arresting cell proliferation and inducing apoptosis. Since cannabinoids kill tumor cells without toxicity on their non transformed counterparts, probably modulating the cell survival/cell death pathways differently, they can represent a class of new potential anticancer drugs.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835116/

http://www.thctotalhealthcare.com/category/gllomas/