Real world experience of patients with amyotrophic lateral sclerosis (ALS) in the treatment of spasticity using tetrahydrocannabinol:cannabidiol (THC:CBD).

Image result for bmc neurology“Treatment of spasticity poses a major challenge in amyotrophic lateral sclerosis (ALS) patient management.

Delta-9-tetrahydrocannabinol (THC):cannabidiol (CBD) oromucosal spray (THC:CBD), approved for the treatment of spasticity in multiple sclerosis, serves as a complementary off-label treatment option in ALS-related spasticity.

The mean dose THC:CBD were 5.5 daily actuations (range < 1 to 20). Three subgroups of patients were identified: 1) high-dose daily use (≥ 7 daily actuations, 34%, n = 11), 2) low-dose daily use (< 7 daily actuations, 50%, n = 16), 3) infrequent use (< 1 daily actuation, 16%, n = 5). Overall NPS was + 4.9 (values above 0 express a positive recommendation to fellow patients). Remarkably, patients with moderate to severe spasticity (NRS ≥ 4) reported a high recommendation rate (NPS: + 29) in contrast to patients with mild spasticity (NRS < 4; NPS: - 44). For the three main domains of TSQM-9 high mean satisfaction levels were found (maximum value 100): effectiveness 70.5 (±22.3), convenience 76.6 (±23.3) and global satisfaction 75.0 (±24.7).

CONCLUSION:

THC:CBD is used in a wide dose range suggesting that the drug was applied on the basis of individual patients’ needs and preferences. Contributing to this notion, moderate to severe spasticity was associated with an elevated number of daily THC:CBD actuations and stronger recommendation rate (NPS) as compared to patients with mild spasticity. Overall, treatment satisfaction (TSQM-9) was high. The results suggest that THC:CBD may serve as a valuable addition in the spectrum of symptomatic therapy in ALS. However, prospective studies and head-to-head comparisons to other spasticity medications are of interest to further explore the effectiveness of THC:CBD in the management of spasticity, and other ALS-related symptoms.”

“Overall, patients reported outcomes as assessed by TSQM-9 revealed a high treatment satisfaction with THC:CBD. The results of our study suggest that THC:CBD may serve as an important addition to the spectrum of treatment options of spasticity in ALS.”

The Endocannabinoid System, Our Universal Regulator

Image result for journal of young investigators

“The endocannabinoid system (ECS) plays a very important role in the human body for our survival. This is due to its ability to play a critical role in maintaining the homeostasis of the human body, which encompasses the brain, endocrine, and immune system, to name a few. ECS is a unique system in multiple dimensions.

To begin with, it is a retrograde system functioning post- to pre-synapse, allowing it to be a “master regulator” in the body. Secondly, it has a very wide scope of influence due to an abundance of cannabinoid receptors located anywhere from immune cells to neurons. Finally, cannabinoids are rapidly synthesized and degraded, so they do not stay in the body for very long in high amounts, possibly enabling cannabinoid therapy to be a safer alternative to opioids or benzodiazepines. This paper will discuss how ECS functions through the regulation of neurotransmitter function, apoptosis, mitochondrial function, and ion-gated channels. The practical applications of the ECS, as well as the avenues for diseases such as epilepsy, cancer, amyotrophic lateral sclerosis (ALS), and autism, which have no known cure as of now, will be explored.

The ECS is one of the, if not the most, important systems in our body. Its role in the homeostatic function of our body is undeniable, and its sphere of influence is incredible. Additionally, it also plays a major role in apoptotic diseases, mitochondrial function, and brain function.

Its contribution is more than maintaining homeostasis; it also has a profound ability in regulation. Working in a retrograde fashion and with a generally inhibitory nature, ECS can act as a “kill switch.” However, it has been shown to play an inhibitory or stimulatory role based on the size of the influx of cannabinoids, resulting in a bimodal regulation. Furthermore, due to the nature of the rate of degradation of cannabinoids, it does not have as many long-term side effects as most of the current drugs on the market.

The ECS may not only provide answers for diseases with no known cures, but it could change the way we approach medicine. This system would allow us to change our focus from invasive pharmacological interventions (i.e. SSRIs for depression, benzodiazepines for anxiety, chemotherapies for cancer) to uncovering the mystery of why the body is failing to maintain homeostasis. Understanding the roles of ECS in these diseases confers a new direction for medicine which may eradicate the use of some of the less tolerable therapeutics.”

https://www.jyi.org/2018-june/2018/6/1/the-endocannabinoid-system-our-universal-regulator

Safety and efficacy of nabiximols on spasticity symptoms in patients with motor neuron disease (CANALS): a multicentre, double-blind, randomised, placebo-controlled, phase 2 trial.

The Lancet Neurology

“Spasticity is a major determinant of disability and decline in quality of life in patients with motor neuron disease.

Cannabinoids have been approved for symptomatic treatment of spasticity in multiple sclerosis. We investigated whether cannabinoids might also reduce spasticity in patients with motor neuron disease.

Nabiximols was well tolerated, and no participants withdrew from the double-blind phase of the study. No serious adverse effects occurred.

INTERPRETATION:

In this proof-of-concept trial, nabiximols had a positive effect on spasticity symptoms in patients with motor neuron disease and had an acceptable safety and tolerability profile.”

https://www.ncbi.nlm.nih.gov/pubmed/30554828

https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(18)30406-X/fulltext

Effects of cannabinoids in Amyotrophic Lateral Sclerosis (ALS) murine models: A systematic review and meta-analysis.

Publication cover image

“Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder that results from motor neuron damage.

Cannabinoids have been proposed as treatments for ALS due to their anti-excitotoxicity, anti-oxidant, and anti-inflammatory effects.

This review provides some evidence for the efficacy of cannabinoids in prolonging survival time in an ALS mouse model. A delay in disease progression is also suggested following cannabinoid treatment”

https://www.ncbi.nlm.nih.gov/pubmed/30520038

https://onlinelibrary.wiley.com/doi/abs/10.1111/jnc.14639

“The endocannabinoid system in amyotrophic lateral sclerosis. There is increasing evidence that cannabinoids and manipulation of the endocannabinoid system may have therapeutic value in ALS, in addition to other neurodegenerative conditions. Cannabinoids exert anti-glutamatergic and anti-inflammatory actions through activation of the CB(1) and CB(2) receptors, respectively. Cannabinoid agents may also exert anti-oxidant actions by a receptor-independent mechanism. Therefore the ability of cannabinoids to target multiple neurotoxic pathways in different cell populations may increase their therapeutic potential in the treatment of ALS.”  https://www.ncbi.nlm.nih.gov/pubmed/18781981

http://www.thctotalhealthcare.com/category/amyotrophic-lateral-sclerosis-als-lou-gehrigs-disease/

Antiapoptotic effects of cannabidiol in an experimental model of cognitive decline induced by brain iron overload.

Image result for translational psychiatry

“Iron accumulation in the brain has been recognized as a common feature of both normal aging and neurodegenerative diseases. Cognitive dysfunction has been associated to iron excess in brain regions in humans. We have previously described that iron overload leads to severe memory deficits, including spatial, recognition, and emotional memory impairments in adult rats.

In the present study we investigated the effects of neonatal iron overload on proteins involved in apoptotic pathways, such as Caspase 8, Caspase 9, Caspase 3, Cytochrome c, APAF1, and PARP in the hippocampus of adult rats, in an attempt to establish a causative role of iron excess on cell death in the nervous system, leading to memory dysfunction.

Cannabidiol (CBD), the main non-psychotropic component of Cannabis sativa, was examined as a potential drug to reverse iron-induced effects on the parameters analyzed.

These results suggest that iron can trigger cell death pathways by inducing intrinsic apoptotic proteins. The reversal of iron-induced effects by CBD indicates that it has neuroprotective potential through its anti-apoptotic action.”

“In summary, we have shown that iron treatment in the neonatal period disrupts the apoptotic intrinsic pathway. This finding may place iron excess as a central component in neurodegenerative processes since many neurodegenerative disorders are accompanied by iron accumulation in brain regions. Moreover, indiscriminate iron supplementation to toddlers and infants, modeled here by iron overload in the neonatal period, has been considered a potential environmental risk factor for the development of neurodegenerative disorders later in life. Our findings also strongly suggest that CBD has neuroprotective effects, at least in part by blocking iron-induced apoptosis even at later stages, following iron overload, which puts CBD as a potential therapeutic agent in the treatment of neurodegenerative diseases.”

Cannabinoid pharmacology/therapeutics in chronic degenerative disorders affecting the central nervous system.

 Biochemical Pharmacology “The endocannabinoid system (ECS) exerts a modulatory effect of important functions such as neurotransmission, glial activation, oxidative stress, or protein homeostasis.

Dysregulation of these cellular processes is a common neuropathological hallmark in aging and in neurodegenerative diseases of the central nervous system (CNS). The broad spectrum of actions of cannabinoids allows targeting different aspects of these multifactorial diseases.

In this review, we examine the therapeutic potential of the ECS for the treatment of chronic neurodegenerative diseases of the CNS focusing on Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis.

First, we describe the localization of the molecular components of the ECS and how they are altered under neurodegenerative conditions, either contributing to or protecting cells from degeneration.

Second, we address recent advances in the modulation of the ECS using experimental models through different strategies including the direct targeting of cannabinoid receptors with agonists or antagonists, increasing the endocannabinoid tone by the inhibition of endocannabinoid hydrolysis, and activation of cannabinoid receptor-independent effects.

Preclinical evidence indicates that cannabinoid pharmacology is complex but supports the therapeutic potential of targeting the ECS.

Third, we review the clinical evidence and discuss the future perspectives on how to bridge human and animal studies to develop cannabinoid-based therapies for each neurodegenerative disorder.

Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to each disease and the multiple unexplored pathways in cannabinoid pharmacology that could be useful for the treatment of neurodegenerative diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/30121249

https://www.sciencedirect.com/science/article/abs/pii/S000629521830337X

Neuroprotective effects of the cannabigerol quinone derivative VCE-003.2 in SOD1G93A transgenic mice, an experimental model of amyotrophic lateral sclerosis.

 Image result for sciencedirect

“Antioxidant phytocannabinoids, synthetic compounds targeting the CB2 receptor, and inhibitors of the endocannabinoid inactivation afforded neuroprotection in SOD1G93A mutant mice, a model of ALS. These effects may involve the activation of PPAR-γ too.

Here, we have investigated the neuroprotective effects in SOD1G93A mutant mice of the cannabigerol derivative VCE-003.2, which works as by activating PPAR-γ.

As expected, SOD1G93Atransgenic mice experienced a progressive weight loss and neurological deterioration, which was associated with a marked loss of spinal cholinergic motor neurons, glial reactivity, and elevations in several biochemical markers (cytokines, glutamate transporters) that indirectly reflect the glial proliferation and activation in the spinal cord. The treatment with VCE-003.2 improved most of these neuropathological signs.

It attenuated the weight loss and the anomalies in neurological parameters, preserved spinal cholinergic motor neurons, and reduced astroglial reactivity. VCE-003.2 also reduced the elevations in IL-1β and glial glutamate transporters. Lastly, VCE-003.2 attenuated the LPS-induced generation of TNF-α and IL-1β in cultured astrocytes obtained from SOD1G93Atransgenic newborns, an effect also produced by rosiglitazone, then indicating a probable PPAR-γ activation as responsible of its neuroprotective effects.

In summary, our results showed benefits with VCE-003.2 in SOD1G93A transgenic mice supporting PPAR-γ as an additional neuroprotective target available for cannabinoids in ALS. Such benefits would need to be validated in other ALS models prior to be translated to the clinical level.”

https://www.ncbi.nlm.nih.gov/pubmed/30076846

https://www.sciencedirect.com/science/article/abs/pii/S0006295218303198

Emerging strategies targeting cb2 cannabinoid receptor: biased agonism and allosterism.

Biochemical Pharmacology

“During these last years, the CB2 cannabinoid receptor has emerged as a potential anti-inflammatory target in diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s disease, ischemic stroke, autoimmune diseases, osteoporosis, and cancer. However, the development of clinically useful CB2 agonists reveals to be very challenging. Allosterism and biased-signaling mechanisms at CB2 receptor may offer new avenues for the development of improved CB2 receptor-targeted therapies. Although there has been some exploration of CB1 receptor activation by new CB1 allosteric or biased-signaling ligands, the CB2 receptor is still at initial stages in this domain. In an effort to understand the molecular basis behind these pharmacological approaches, we have analyzed and summarized the structural data reported so far at CB2 receptor.”

Targeting glial CB2 receptors to delay the progression of the pathological phenotype in TDP-43 (A315T) transgenic mice, a model of amyotrophic lateral sclerosis.

British Journal of Pharmacology banner

“CB2 receptors up-regulate in reactive microglia in the spinal cord of TDP-43(A315T) transgenic mice, an experimental model of ALS.

To determine whether such up-regulation may be pharmacologically exploited, we investigated different treatments modulating the CB2 receptor function.

CONCLUSIONS AND IMPLICATIONS:

Our study shows an important role for glial CB2 receptors in limiting the progression of the pathological phenotype in TDP-43(A315T) transgenic mice. Such benefits derived apparently from the activation of CB2 receptors concentrated in astrocytes and reactive microglia located in spinal dorsal and ventral horns.”

https://www.ncbi.nlm.nih.gov/pubmed/29574689

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14216

Endocannabinoid system and cannabinoids in neurogenesis – new opportunities for neurological treatment? Reports from experimental studies.

“Neurogenesis is one of the most important phenomenona affecting human life. This process consists of proliferation, migration and differentiation of neuroblasts and synaptic integrations of newborn neurons.
Proliferation of new cells continues into old age, also in humans, although the most extensive process of cell formation occurs during the prenatal period. It is possible to distinguish two regions in the brain responsible for neurogenesis: the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ). Hippocampal neurogenesis is very sensitive to various physiological and pathological stimuli.
The functional integration of the newly-born dentate granule cells into hippocampal circuitry, and their ability to mediate long-term potentiation in DG, has led to the hypothesis that neurogenesis in the adult brain may play a key role in learning and memory function, as well as cognitive dysfunction in some diseases.
Brain disorders, such as neurodegenerative diseases or traumatic brain injuries, significantly affect migration, proliferation and differentiation of neural cells. In searching for the best neurological drugs protecting neuronal cells, stimulating neurogenesis, while also developing no side-effects, endocannabinoids proved to be a strong group of substances having many beneficial properties.
Therefore, the latest data is reviewed of the various experimental studies concerning the analysis of the most commonly studied cannabinoids and their impact on neurogenesis.”