The Potential Antinociceptive Effect and Mechanism of Cannabis sativa L. Extract on Paclitaxel-Induced Neuropathic Pain in Rats Uncovered by Multi-Omics Analysis

pubmed logo

“Cannabis sativa L. (hemp) is a herbaceous plant rich in cannabinoids with a long history of use in pain treatment.

The most well-characterized cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC), garnered much attention in chemotherapy-induced peripheral neuropathy (CIPN) treatment. However, few studies have investigated the biological benefits and mechanism of hemp extract on CIPN.

In the present study, hemp extract (JG) rich in cannabinoids was extracted by supercritical fluid carbon dioxide extraction (SFCE). The antinociceptive efficacy was evaluated using a paclitaxel-induced peripheral neuropathy (PIPN) rat model based on behavioral tests. Further omics-based approaches were applied to explore the potential mechanisms.

The results showed that JG decreased mechanical allodynia, thermal hyperalgesia, and inflammatory cytokines in PIPN rats significantly. Transcriptome analysis identified seven key genes significantly regulated by JG in PIPN model rats, mainly related to the neuroactive ligand-receptor interaction pathway, PPAR signaling pathway, and cAMP signaling pathway. In metabolomic analysis, a total of 39 significantly altered metabolites were identified, mainly correlated with pentose and glucuronate interconversions and the glycerophospholipid metabolism pathway.

Gut microbiota analysis suggested that increased community Lachnoclostridium and Lachnospiraceae_UCG-006 in PIPN rats can be reversed significantly by JG.

In conclusion, hemp extract exhibited antinociceptive effects on PIPN. The analgesic mechanism was probably related to the regulation of inflammation, neuroactive ligand-receptor interaction pathway, sphingolipid metabolism, etc. This study provides novel insights into the functional interactions of Cannabis sativa L. extract on PIPN.”

https://pubmed.ncbi.nlm.nih.gov/38731449/

“In conclusion, the antinociceptive effects and mechanism of Cannabis sativa L. extract rich in cannabinoids in PIPN rats were evaluated by using pharmacological methods integrated with transcriptomic analysis, metabolomic analysis, and gut microbiota analysis. 

Cannabis sativa L. extract effectively alleviated neuropathic pain induced by PTX, mainly by the identified 7 key genes, 39 metabolic biomarkers, and 2 bacterial genera.

Related pathways may be involved in the inflammatory response, regulating neuroactive ligand–receptor interaction pathway, PPAR signaling pathway, inflammatory mediator regulation of TRP channels, glycerophospholipid metabolism, pentose and glucuronate interconversions, etc.

Our study provides novel insights into the functional interactions of Cannabis sativa L. extract on PIPN, which offers key information for new strategies in PIPN treatment and provides a reference for the medicinal development of hemp.”

https://www.mdpi.com/1420-3049/29/9/1958

Research Progress on the Mechanism of the Antitumor Effects of Cannabidiol

pubmed logo

“Cannabidiol (CBD), a non-psychoactive ingredient extracted from the hemp plant, has shown therapeutic effects in a variety of diseases, including anxiety, nervous system disorders, inflammation, and tumors. CBD can exert its antitumor effect by regulating the cell cycle, inducing tumor cell apoptosis and autophagy, and inhibiting tumor cell invasion, migration, and angiogenesis. This article reviews the proposed antitumor mechanisms of CBD, aiming to provide references for the clinical treatment of tumor diseases and the rational use of CBD.”

https://pubmed.ncbi.nlm.nih.gov/38731434/

“The antitumor effects of CBD in different types of cancer have attracted widespread attention, and the number of relevant research results is steadily increasing. The studies published to date all point to the obvious antitumor effects of CBD and that its mechanisms include the induction of cell cycle arrest and autophagy, the promotion of apoptosis, the modulation of angiogenesis, and the inhibition of tumor cell migration and invasion. In addition, CBD has good synergistic effects with other medicines, and several clinical reports show CBD being used to treat cancer. The results presented in this review indicate that CBD has extremely promising potential for clinical use in the treatment of cancer patients.”

https://www.mdpi.com/1420-3049/29/9/1943

CBD in the Treatment of Epilepsy

pubmed logo

“It has been several years since highly purified cannabidiol (CBD) was registered as a medication that can be used in children of at least 2 years of age to treat different types of seizures related to Lennox-Gastaut syndrome (LGS), Dravet syndrome (DS), and more recently tuberous sclerosis complex (TSC).

During this time, 39 randomized clinical trials (RCTs) and 13 meta-analyses on the efficacy and safety of CBD treatment have been published. Each of the meta-analyses had its own criteria for the RCTs’ inclusion and, therefore, slightly different interpretations of the analyzed data.

Each of them contributed in its own way to the understanding of CBD pharmacology, mechanisms of therapeutic action, development of adverse reactions, and drug-drug interactions. Hence, it seemed reasonable to gather the most relevant data in one article and present all the current knowledge on the use of CBD in epilepsy.

The results of the 13 meta-analyses presented herein confirmed the effectiveness and safety of CBD in children and adolescents with DREs. In adults, reliable conclusions cannot be drawn due to insufficient data.”

https://pubmed.ncbi.nlm.nih.gov/38731471/

https://www.mdpi.com/1420-3049/29/9/1981

Cannabidiol-Loaded Solid Lipid Nanoparticles Ameliorate the Inhibition of Proinflammatory Cytokines and Free Radicals in an In Vitro Inflammation-Induced Cell Model

pubmed logo

“Cannabidiol (CBD) is a non-psychoactive compound derived from Cannabis sativa. It has demonstrated promising effects in combating inflammation and holds potential as a treatment for the progression of chronic inflammation. However, the clinical application of CBD is limited due to its poor solubility and bioavailability.

This study introduces an effective method for preparing CBD-loaded solid lipid nanoparticles (CBD-SLNs) using a combination of low-energy hot homogenization and ultrasonication. We enhanced this process by employing statistical optimization with response surface methodology (RSM). The optimized CBD-SLN formulation utilizes glyceryl monostearate as the primary lipid component of the nanocarrier. The CBD-SLN formulation is screened as a potential tool for managing chronic inflammation. Stable, uniformly dispersed spherical nanoparticles with a size of 123 nm, a surface charge of -32.1 mV, an encapsulation efficiency of 95.16%, and a drug loading of 2.36% were obtained.

The CBD-SLNs exhibited sustained release properties, ensuring prolonged and controlled CBD delivery, which could potentially amplify its therapeutic effects. Additionally, we observed that CBD-SLNs significantly reduced both reactive oxygen and nitrogen species and proinflammatory cytokines in chondrocyte and macrophage cell lines, with these inhibitory effects being more pronounced than those of free CBD.

In conclusion, CBD-SLNs demonstrated superiority over free CBD, highlighting its potential as an effective delivery system for CBD.”

https://pubmed.ncbi.nlm.nih.gov/38731964/

https://www.mdpi.com/1422-0067/25/9/4744

Mitochondrial calcium overload contributes to cannabinoid-induced paraptosis in hormone-responsive breast cancer cells

pubmed logo

“Studies have shown that natural products can induce paraptosis in tumour cell lines. Paraptosis is characterized by cytoplasmic vacuolation arising from the endoplasmic reticulum (ER) and mitochondria. The mechanism of paraptosis is unclear; however, dysregulation of Ca2+ homeostasis is believed to affect paraptosis induction.

This study investigated the mechanism of cell death induced by a phytocannabinoid ratio in the MCF7 breast cancer cell line.

The crystal violet assay was used to detect changes in viability and morphology changes were investigated using light and transmission electron microscopy. Various inhibitors, fluorescent staining with high-content screening, and Western blot analysis were used to investigate different cell death mechanisms.

The phytocannabinoid ratio induced significant cell death and cytoplasmic vacuolation in MCF7 cells; however, no apoptosis, necrosis, autophagy, or ferroptosis was detected. Vacuolation induced by phytocannabinoid treatment was inhibited by cycloheximide, suggesting paraptosis induction. The mechanism of paraptosis induction was investigated, and it was found that treatment (1) induced ER dilation and mitochondrial swelling, (2) induced significant ER stress and mitochondrial Ca2+ overload and dysfunction, which appeared to be mediated by the voltage-dependent anion channel, and (3) significantly impaired all mitochondrial metabolic pathways.

The data demonstrated that paraptosis induced by the cannabinoid ratio was mediated by Ca2+ flux from the ER to the mitochondria.

These findings highlight a novel mechanism of cannabinoid-induced cell death and emphasize the anti-cancer potential of cannabinoid ratios, which exhibited enhanced effects compared to individual cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/38721827/

” In the context of cancer, cannabinoids have primarily been used for their palliative effects to treat the side effects of chemotherapy; however, their tumour-suppressive properties have been known since the first observation of their antitumor effects in 1975.”

https://onlinelibrary.wiley.com/doi/10.1111/cpr.13650

Cannabidiol’s cytotoxicity in pancreatic cancer is induced via an upregulation of ceramide synthase 1 and ER stress

pubmed logo

“Pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive malignancies with a median 5 year-survival rate of 12%.

Cannabidiol (CBD) has been found to exhibit antineoplastic potential and may potentiate the anticancer effects of cytotoxic’s such as gemcitabine.

CBD therapy has been linked to de novo synthesis of ceramide. The sphingolipid ceramide is a potent tumour suppressor lipid with roles in apoptosis and autophagy. One of the key players involved is ceramide synthase, an enzyme with six isoforms (CerS1-CerS6), reported to have disease prognostic value. Quantitative real time PCR was used to determine mRNA expression levels of ceramide synthase isoforms, GRP78, ATF4 and CHOP. Western blotting was used to analyze protein expression of these markers and knockdown of CerS1 and GRP78 were applied via an siRNA and confirmed by the two mentioned methods. Mice with PDAC xenografts were injected via intraperitoneal method with drugs and tumours were analysed with flow cytometry and processed using H&E and IHC staining. siRNA knockdown of ceramide synthase 1 (CerS1) and analysis point to evidence of a putative CerS1 dependent pathway driven by CBD in activating endoplasmic reticulum (ER) stress target; GRP78.

Upon CBD treatment, CerS1 was upregulated and downstream this led to the GRP78/ATF4/CHOP arm of the unfolded protein response (UPR) pathway being activated. In an in vivo model of PDAC in which CerS1 was not upregulated on IHC, there was no observed improvement in survival of animals, however a reduction in tumour growth was observed in combination chemotherapy and CBD group, indicating further investigations in vivo.

These findings provide evidence of a potential ceramide induced cytotoxic mechanism of action of CBD in pancreatic ductal adenocarcinoma.”

https://pubmed.ncbi.nlm.nih.gov/38720356/

“The findings presented in this work, indicate dose-dependent and time-dependent cytotoxic effects of CBD in both human and murine pancreatic cancer cells.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-024-00227-x

Cannabidiol alleviates carbon tetrachloride-induced liver fibrosis in mice by regulating NF-κB and PPAR-α pathways

pubmed logo

“Liver fibrosis has become a serious public health problem that can develop into liver cirrhosis and hepatocellular carcinoma and even lead to death.

Cannabidiol (CBD), which is an abundant nonpsychoactive component in the cannabis plant, exerts cytoprotective effects in many diseases and under pathological conditions.

In our previous studies, CBD significantly attenuated liver injury induced by chronic and binge alcohol in a mouse model and oxidative bursts in human neutrophils. However, the effects of CBD on liver fibrosis and the underlying mechanisms still need to be further explored. A mouse liver fibrosis model was induced by carbon tetrachloride (CCl4) for 10 weeks and used to explore the protective properties of CBD and related molecular mechanisms. After the injection protocol, serum samples and livers were used for molecular biology, biochemical and pathological analyses.

The results showed that CBD could effectively improve liver function and reduce liver damage and liver fibrosis progression in mice; the expression levels of transaminase and fibrotic markers were reduced, and histopathological characteristics were improved. Moreover, CBD inhibited the levels of inflammatory cytokines and reduced the protein expression levels of p-NF-κB, NF-κB, p-IκBα, p-p38 MAPK, and COX-2 but increased the expression level of PPAR-α. We found that CBD-mediated protection involves inhibiting NF-κB and activating PPAR-α.

In conclusion, these results suggest that the hepatoprotective effects of CBD may be due to suppressing the inflammatory response in CCl4-induced mice and that the NF-κB and PPAR-α signaling pathways might be involved in this process.”

https://pubmed.ncbi.nlm.nih.gov/38711461/

“In summary, we have shown that intraperitoneal injection of CBD exerts potent anti-inflammatory and antifibrotic activities in vivo. Moreover, we found that the first time CBD efficacy in reducing CCl4-induced hepatic fibrosis by multiple mechanisms. These mechanisms may involve inhibition of NF-κB, activation of the PPAR-α pathway, and inhibition of oxidative stress. Based on these findings, CBD has the potential to be further developed as a treatment for hepatic fibrosis, especially as a combination therapy with the currently available therapies.”

https://www.ebm-journal.org/journals/experimental-biology-and-medicine/articles/10.3389/ebm.2024.10141/full

Direct Inhibition of BK Channels by Cannabidiol, One of the Principal Therapeutic Cannabinoids Derived from Cannabis sativa

pubmed logo

“Cannabidiol (CBD), one of the main Cannabis sativa bioactive compounds, is utilized in the treatment of major epileptic syndromes. Its efficacy can be attributed to a multimodal mechanism of action that includes, as potential targets, several types of ion channels. In the brain, CBD reduces the firing frequency in rat hippocampal neurons, partly prolonging the duration of action potentials, suggesting a potential blockade of voltage-operated K+ channels. We postulate that this effect might involve the inhibition of the large-conductance voltage- and Ca2+-operated K+ channel (BK channel), which plays a role in the neuronal action potential’s repolarization. Thus, we assessed the impact of CBD on the BK channel activity, heterologously expressed in HEK293 cells. Our findings, using the patch-clamp technique, revealed that CBD inhibits BK channel currents in a concentration-dependent manner with an IC50 of 280 nM. The inhibition is through a direct interaction, reducing both the unitary conductance and voltage-dependent activation of the channel. Additionally, the cannabinoid significantly delays channel activation kinetics, indicating stabilization of the closed state. These effects could explain the changes induced by CBD in action potential shape and duration, and they may contribute to the observed anticonvulsant activity of this cannabinoid.”

https://pubmed.ncbi.nlm.nih.gov/38708937/

“Taken together, our findings expand our understanding of the spectrum of ion channels directly modulated by CBD, suggesting a potential multitarget mechanism underlying its therapeutic effects. Finally, the widespread distribution and function of BK channels in human physiology and pathologies broaden the potential therapeutic uses of CBD to other conditions in which this channel is implicated.”

https://pubs.acs.org/doi/10.1021/acs.jnatprod.3c01274

Terpenes from Cannabis sativa induce antinociception in a mouse model of chronic neuropathic pain via activation of adenosine A2A receptors

pubmed logo

“Terpenes are small hydrocarbon compounds that impart aroma and taste to many plants, including Cannabis sativa.

A number of studies have shown that terpenes can produce pain relief in various pain states in both humans and animals. However, these studies were methodologically limited and few established mechanisms of action.

In our previous work, we showed that the terpenes geraniol, linalool, β-pinene, α-humulene, and β-caryophyllene produced cannabimimetic behavioral effects via multiple receptor targets. We thus expanded this work to explore the potential antinociception and mechanism of these Cannabis terpenes in a mouse model of chronic pain.

We first tested for antinociception by injecting terpenes (200 mg/kg, IP) into male and female CD-1 mice with mouse models of chemotherapy-induced peripheral neuropathy (CIPN) or lipopolysaccharide-induced inflammatory pain, finding that the terpenes produced roughly equal antinociception to 10 mg/kg morphine or 3.2 mg/kg WIN55,212. We further found that none of the terpenes produced reward as measured by conditioned place preference, while low doses of terpene (100 mg/kg) combined with morphine (3.2 mg/kg) produced enhanced antinociception vs either alone. We then used the adenosine A2A receptor (A2AR) selective antagonist istradefylline (3.2 mg/kg, IP) and spinal cord-specific CRISPR knockdown of the A2AR to identify this receptor as the mechanism for terpene antinociception in CIPN. In vitro cAMP and binding studies and in silico modeling studies further suggested that the terpenes act as A2AR agonists.

Together these studies identify Cannabis terpenes as potential therapeutics for chronic neuropathic pain and identify a receptor mechanism for this activity.”

https://pubmed.ncbi.nlm.nih.gov/38709489/

https://journals.lww.com/pain/abstract/9900/terpenes_from_cannabis_sativa_induce.589.aspx

In silico investigation of cannabinoids from Cannabis sativa leaves as a potential anticancer drug to inhibit MAPK-ERK signaling pathway and EMT induction

pubmed logo

“Genes related to MAPK-ERK signaling pathways, and epithelial-mesenchymal transition induction is evolutionarily conserved and has crucial roles in the regulation of important cellular processes, including cell proliferation.

In this study, six cannabinoids from Cannabis sativa were docked with MAPK-ERK signaling pathways to identify their possible binding interactions.

The results showed that all the cannabinoids have good binding affinities with the target proteins. The best binding affinities were MEK- tetrahydrocannabinol (- 8.8 kcal/mol) and P13k-cannabinol (- 8.5 kcal/mol). The root mean square deviation was calculated and used two alternative variants (rmsd/ub and rmsd/lb) and the values of rmsd/lb fluctuated 8.6-2.0 Å and for rmsd/ub from 1.0 to 2.0 Å that suggests the cannabinoids and protein complex are accurate and cannot destroy on binding.

The study analyzed the pharmacokinetic and drug-likeness properties of six cannabinoids from C. sativa leaves using the SwissADME web tool. Lipinski’s rule of five was used to predict drug-likeness and showed that all compounds have not violated it and the total polar surface area of cannabinoids was also according to Lipinski’s rule that is benchmarked of anticancer drugs. Cannabinoids are meet the requirements of leadlikeness and synthetic accessibility values showed they can be synthesized. The molecular weight, XLOGP3, solubility (log S), and flexibility (FLEX) are according to the bioavailability radar. The bioavailability score and consensus Log Po/w fall within the acceptable range for the suitable drug. Pharmacokinetics parameters showed that cannabinoids cannot cross the blood-brain barrier, have high GI absorption as well as cannabinoids are substrates of (CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4) but no substrate of P-glycoprotein.

Based on these findings, the study suggests that cannabinoids are suitable drugs that could be used as effective inhibitors for target proteins involved in cancer pathways. Among the six cannabinoids, cannabinol and tetrahydrocannabinol exerted maximum binding affinities with proteins of MAPK-ERK signaling pathways, and their pharmacokinetics and drug-likeness-related profiles suggest that these cannabinoids could be superlative inhibitors in cancer treatment. Further in vitro, in vivo, and clinical studies are needed to explore their potential in cancer treatment.”

https://pubmed.ncbi.nlm.nih.gov/38716440/

“Numerous studies have been conducted on the application of cannabinoids as an anti-cancer treatment. It was found that it generally has beneficial and protective effects, preventing the growth and spread of tumors and reestablishing homeostasis. Therapeutic trials on the use of cannabinoids as an anti-cancer medication are currently being conducted, even though their therapeutic use in palliative care is well documented.

It is anticipated that the pharmacokinetic and molecular docking data of cannabinoids and the proteins related to MAPK-ERK signaling pathways will help ensure that these drugs are successfully deciphered and developed into oncological healthcare since drug repurposing is a much faster and more cost-effective process than the de novo introduction of a new drug into the clinic.”

https://link.springer.com/article/10.1007/s40203-024-00213-4