Cannabidiol Prevents Heart Failure Dysfunction and Remodeling Through Preservation of Mitochondrial Function and Calcium Handling

pubmed logo

“Heart failure (HF) is characterized by energy deprivation, calcium (Ca2+) handling alterations, and inflammation: effects associated with mitochondrial dysfunction.

Cannabidiol previously prevented mitochondrial dysfunction. Thus, it may prevent HF progression.

In mice with HF, subcutaneous cannabidiol attenuated cardiac fibrosis, hypertrophy, loss of ejection fraction, and inflammation; isolated cardiomyocytes preserved cell shortening, Ca2+ handling, mitochondrial function and redox balance. Hypertrophied ventricular cardiomyoblasts suggested cannabidiol-mediated effects through peroxisome proliferator-activated gamma receptors.

Therefore, cannabidiol in HF limited cardiac hypertrophy and preserved contractile function by sustaining cardiomyocyte and mitochondrial function through redox balance maintenance, supporting cannabidiol role as a cardioprotective therapy in HF.”

https://pubmed.ncbi.nlm.nih.gov/40562493/

“This study demonstrated that cannabidiol offers cardioprotection in a HF mouse model induced by L-NAME and ANGII administration. The results showed improved cardiac function and reduced cardiac hypertrophy, remodeling, inflammation, and cell death. In cardiomyocytes from the HF model, cannabidiol restored cell shortening, which was linked to improved calcium Ca2+ handling.

Additionally, it helped preserve cellular oxidative status, mitochondrial bioenergetics, and notably, modulated mCa2+ overload by affecting MCU expression. This suggests that the cardioprotective effects of cannabidiol are caused by the preservation of excitation-contraction-energetic coupling. The identified cellular mechanisms through which cannabidiol exerts its cardioprotective effects include reducing oxidative stress and the activation of PPAR-γ, which helps prevent mitochondrial dysfunction by decreasing MCU hyperactivity.”

“TRANSLATIONAL OUTLOOK: This study contributes to the knowledge of a novel therapy based on cannabidiol on the pathophysiology of HF, which is supported by preclinical data. Here, we described that cardioprotection exerted by cannabidiol on a HF mouse model was caused by the attenuation of cardiac fibrosis and hypertrophy along with improved ejection fraction and cardiac output. This was achieved, in the cardiomyocyte, by preservation of cell shortening, sarcoplasmic reticulum Ca2+ uptake, mitochondrial function, and redox balance, with data supporting the role of a PPAR-γ–dependent mechanism. This study suggests promising therapeutic results of cannabidiol used in the clinical field of HF treatment. In this regard, these results have inspired a translational effort to assess its effects in HF and cardiac dysfunction.”

https://www.jacc.org/doi/10.1016/j.jacbts.2024.12.009

Evaluating the Antitumor Potential of Cannabichromene, Cannabigerol, and Related Compounds from Cannabis sativa and Piper nigrum Against Malignant Glioma: An In Silico to In Vitro Approach

pubmed logo

“Malignant gliomas, including glioblastoma multiforme (GBM), are highly aggressive brain tumors with a poor prognosis and limited treatment options.

This study investigates the antitumor potential of bioactive compounds derived from Cannabis sativa and Piper nigrum using molecular docking, cell viability assays, and transcriptomic and expression analyses from public databases in humans and cell lines.

Cannabichromene (CBC), cannabigerol (CBG), cannabidiol (CBD), and Piper nigrum derivates exhibited strong binding affinities relative to glioblastoma-associated targets GPR55 and PINK1.

In vitro analyses demonstrated their cytotoxic effects on glioblastoma cell lines (U87MG, T98G, and CCF-STTG1), as well as on neuroblastoma (SH-SY5Y) and oligodendroglial (MO3.13) cell lines, revealing interactions among these compounds. The differential expression of GPR55 and PINK1 in tumor versus normal tissues further supports their potential as biomarkers and therapeutic targets.

These findings provide a basis for the development of novel therapies and suggest unexplored molecular pathways for the treatment of malignant glioma.”

https://pubmed.ncbi.nlm.nih.gov/40565152/

“While docking studies suggest strong interactions between Piper nigrum derivatives, cannabinoids, and targets such as PINK1 and GPR55, in vitro experiments confirmed the cytotoxic potential of these compounds in glioblastoma cell lines, with cannabinoids like CBG and CBD showing significant dose-dependent reductions in cell viability, comparable to established chemotherapeutic agents.”

https://www.mdpi.com/1422-0067/26/12/5688

Cannabinol’s Modulation of Genes Involved in Oxidative Stress Response and Neuronal Plasticity: A Transcriptomic Analysis

pubmed logo

“Cannabis sativa is a remarkable source of bioactive compounds, with over 150 distinct phytocannabinoids identified to date. Among these, cannabinoids are gaining attention as potential therapeutic agents for neurodegenerative diseases.

Previous research showed that cannabinol (CBN), a minor cannabinoid derived from Δ9-tetrahydrocannabinol, exhibits antioxidant, anti-inflammatory, analgesic, and anti-bacterial effects.

The objective of this study was to assess the protective potential of 24 h CBN pre-treatment, applied at different concentrations (5 µM, 10 µM, 20 µM, 50 µM, and 100 µM), in differentiated neuroblastoma × spinal cord (NSC-34) cells. Transcriptomic analysis was performed using next-generation sequencing techniques.

Our results reveal that CBN had no negative impact on cell viability at the tested concentrations. Instead, it showed a significant effect on stress response and neuroplasticity-related processes. Specifically, based on the Reactome database, the biological pathways mainly perturbed by CBN pre-treatment were investigated.

This analysis highlighted a significant enrichment in the Reactome pathway’s cellular response to stress, cellular response to stimuli, and axon guidance.

Overall, our results suggest that CBN holds promise as an adjuvant agent for neurodegenerative diseases by modulating genes involved in neuronal cell survival and axon guidance.”

https://pubmed.ncbi.nlm.nih.gov/40563376/

“Aging and neurodegenerative diseases are characterized by a progressive decline in cellular functions, including genomic instability, epigenetic alterations, mitochondrial dysfunction, and chronic inflammation. Our study supports that CBN exerts pleiotropic effects by modulating key molecular pathways involved in oxidative stress response, DNA repair, and neuronal survival. These results suggest that CBN positively modulates the response to cellular damage, stimulating the antioxidant response through the Nrf2 pathway and reducing the sensitivity to programmed cell death, as demonstrated by the regulation of caspases and other genes related to neuronal survival. These effects indicate that CBN may be able to support neuronal health under conditions of chronic stress, a hallmark of neurodegenerative diseases. These findings pave the way for further research into CBN’s therapeutic potential, emphasizing the need for in vivo studies to validate its efficacy and safety profile in neurodegenerative disease models.”

https://www.mdpi.com/2076-3921/14/6/744

How to ESCAPE from Pain? An Observational Study on Improving Pain and Quality of Life with the Cannamedical® Hybrid Cannabis Extract

pubmed logo

“Introduction: Chronic pain remains a challenge, with standard therapies often providing inadequate pain relief and causing undesirable side effects. Medicinal cannabis has emerged as promising alternative. This study assessed the impact of a cannabis hybrid extract on pain intensity and quality of life in daily clinical use.

Methods: ESCAPE was an observational study and included patients aged ≥ 18 years with chronic pain in Germany. The primary objective was to evaluate the effectiveness of the Cannamedical® Hybrid Cannabis Extract THC25:CBD25 on pain during four visits (V1-V4) in clinical practice, and key secondary objectives were pain interference and quality of life. Pain intensity was measured using the Numeric Rating Scale (NRS) of the Brief Pain Inventory (BPI) questionnaire. Pain interference was evaluated with the BPI pain interference subscore, and quality of life-particularly physical and mental health-was assessed with the Short Form-12 (SF-12) questionnaire. Additionally, patient and physician satisfaction with the extract was assessed.

Results: The study included 64 patients (50% female) with chronic pain (intention-to treat population; ITT). Cannabis-naïve patients of the ITT were defined as a subgroup and analyzed separately (N = 35). Mean (± SD) NRS-assessed pain intensity decreased during the study, in both the ITT (5.46 ± 1.73 at V1 vs. 3.37 ± 2.43 at V4) and in the cannabis-naïve subgroup (5.92 ± 1.34 at V1 vs. 2.37 ± 1.69 at V4). Mean pain interference subscore decreased between V1 and V4 for the ITT (5.39 ± 1.92 vs. 3.38 ± 2.46) and the cannabis-naïve group (5.68 ± 1.46 vs. 2.54 ± 1.99). Physical and mental health improved in both groups and high satisfaction with the hybrid cannabis extract was reported by patients and physicians.

Conclusion: Treatment with the Cannamedical® Hybrid Cannabis Extract THC25:CBD25 in daily clinical practice showed positive effects on patients’ pain and quality of life.”

https://pubmed.ncbi.nlm.nih.gov/40560527/

https://link.springer.com/article/10.1007/s12325-025-03262-z

In vitro antimicrobial activity of Thai stick cannabis Hang Kra Rog Phu Phan (Cannabis sativa L.), sugar leaves extract against pathogenic bacteria

pubmed logo

“Objective: Cannabis sativa L. is aware of a rich source of bioactive substances with various structures that exhibit pharmacological activity in the central nervous system, cardiovascular, cerebrovascular, respiratory, reproductive, and gastrointestinal systems.

Materials and methods: In this study, cannabis sugar leaves were soaked in 99% ethanol, followed by evaporation. The antibacterial effect of the cannabis sugar leaf extract was then evaluated using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined using broth dilution.

Results: The results of this study indicated that the cannabis sugar leaf extract inhibited Bacillus cereusVibrio choleraeEscherichia coliStaphylococcus aureus, and Staphylococcus epidermidis when compared to tetracycline, but it did not inhibit Pseudomonas aeruginosa. The MIC and MBC of the cannabis sugar leaves extract against BcereusVcholeraeEcoliSaureus, and Sepidermidis were 0.977, 1.953, 31.25, 62.5, 125, 250, 250, 500, 250, and 500 mg/ml, respectively. The bioactive compounds in cannabis sugar leaf extract were identified using high-performance liquid chromatography.

Conclusion: The results indicated that the major bioactive compounds were Δ-9- tetrahydrocannabinol (THC) and cannabidiol (CBD). While minor bioactive compounds included gallic acid and tannic acid. These results support the benefits of cannabis sugar leaf extract, which has been used for its pharmacological properties and may be useful as an alternative antimicrobial agent in medicine.”

https://pubmed.ncbi.nlm.nih.gov/40568500/

https://www.ejmanager.com/mnstemps/39/39-1729498509.pdf?t=1750936743

The effect of medical cannabis on gastrointestinal symptoms in fibromyalgia and disorders of gut-brain interaction: a patient‑centred real‑world observational study

pubmed logo

“Objectives: Fibromyalgia (FM) is frequently associated with gastrointestinal (GI) disorders such as disorders of gut-brain interaction (DGBIs). Current treatments for FM offer limited relief, leading to the exploration of alternative therapies such as medical cannabis. This study evaluates in the impact of Bedrocan® medical cannabis in FM patients and GI symptoms over six months.

Methods: Sixty FM patients were enrolled, receiving a Bedrocan® cannabis treatment for 6 months. A standardised questionnaire evaluating upper and lower GI symptoms and the Revised Fibromyalgia Impact Questionnaire (FIQR) evaluating FM severity were administered at enrolment and 3 and 6-month follow-up evaluations. DGBIs, in particular, irritable bowel syndrome (IBS), and functional dyspepsia (FD) were diagnosed according to Rome IV criteria.

Results: Forty-six/60 (76.6%) FM patients fulfilled the diagnostic criteria for at least one DGBI; 10/60 (16.7%) FM patients fulfilled the diagnostic criteria for IBS, 17/60 (28.3%) for FD, and 19/60 (31.7%) for both IBS/FD. The FIQR severity score log-transformed significantly decreased during the months-by-month comparison period (repeated-measures ANOVA, p<0.001). Among GI symptoms, the log-transformed intensity-frequency score of epigastric pain, epigastric burning, abdominal pain, abdominal distension, and bloating significantly decreased during the month-by-month comparison period (repeated-measures ANOVA, p<0.01).

Conclusions: This study supports Bedrocan® medical cannabis as an alternative treatment for FM with a potential effect on FD and IBS symptoms. Despite positive outcomes, the study acknowledges limitations, such as the small sample size and absence of a control group. Further research is required to confirm the efficacy of medical cannabis in FM patients, particularly regarding its effects on GI symptoms.”

https://pubmed.ncbi.nlm.nih.gov/40556630/

https://www.clinexprheumatol.org/abstract.asp?a=22389

The endocannabinoidomes: Pharmacological redundancy and promiscuity, and multi-kingdom variety of sources and molecular targets

pubmed logo

“The endocannabinoid system (eCB) is a complex signaling network discovered in mammals during the 1980s-1990s.

It conventionally revolves around two arachidonic acid-derived mediators, N-arachidonoyl-ethanolamine (anandamide) and 2-arachidonoyl-glycerol; their main receptors, the cannabinoid receptors of type 1 (CB1) and type 2 (CB2), and the transient receptor potential vanilloid-1 channels; and the enzymes responsible for their biosynthesis and degradation. However, drawing on these discoveries, numerous eCB-like signaling lipids beyond the classical eCBs, have been unveiled, together with their receptors and metabolic enzymes, thus forming a more complex signaling network known as the endocannabinoidome (eCBome).

This review explores the physiology, pharmacological complexity, and molecular targets of the mammalian eCBome, highlighting its versatility and redundancy in the context of global health. Emerging mediators, metabolic pathways and mechanisms, receptors, and their implications in human physiology and pathology are described, particularly concerning metabolic disorders, pain, inflammation, neurodegenerative diseases, and cancer.

The importance of other “eCBomes” in nonmammalian forms of life that constitute the external and internal environments of mammals is also discussed for the first time in this context. The overarching objective of this article is to gain insights into the potential of eCBome-based therapeutic strategies aimed at enhancing both human and environmental well-being.

SIGNIFICANCE STATEMENT: Lipid-based signaling molecules are ubiquitous in nature, yet their study remains challenging due to intricate regulatory mechanisms. Among lipid signaling pathways, the endocannabinoid (eCB) system and its extended version, the endocannabinoidome (eCBome), are particularly remarkable. Comprising hundreds of mediators, and dozens of receptors and metabolic enzymes, the eCBome regulates critical physiological processes not only in mammals but also across diverse organisms, including plants, fungi, and bacteria. This article examines the evolutionary and functional diversity of eCBomes and highlights their untapped potential as multikingdom therapeutic targets to address pressing challenges in global health.”

https://pubmed.ncbi.nlm.nih.gov/40554266/

https://pharmrev.aspetjournals.org/article/S0031-6997(25)07478-2/abstract

Graphical abstract undfig1

Δ9-Tetrahydrocannabinol and cannabidiol selectively suppress toll-like receptor (TLR) 7- and TLR8-mediated interleukin-1β production by human CD16+ monocytes by inhibiting its post-translational maturation

pubmed logo

“Monocytes are innate immune cells that release inflammatory factors upon detection of infectious and injurious stimuli. CD16+ monocytes, a subset of the total monocyte population, are associated with acute and chronic inflammation in human immunodeficiency virus-associated neurocognitive disorder and rheumatoid arthritis. Given the role monocytes play in regulating the host immune response, this investigation explored the effects of cannabinoids on the monocyte secretome for potential therapeutic applications.

Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are major cannabis-derived compounds established to have immune-modulating properties. Despite a rise in medical cannabis use, the specific mechanism by which THC and CBD modulate the inflammatory response, including by human monocytes remains poorly understood.

We hypothesized that THC and CBD suppress toll-like receptor (TLR) 7- or TLR8-induced inflammatory profiles by CD16+ and CD16 monocytes, specifically interleukin (IL) 1β maturation. Cannabinoid receptor 2 selective agonist, JWH-015, was used to deduce whether cannabinoid receptor 2 signaling alone can mimic immune-modulating properties of THC. Primary human CD16+ and CD16 monocytes were pretreated with THC, CBD, or JWH-015 and then activated through TLR7 or TLR8. Activated monocytes mainly produced IL-1β, tumor necrosis factor-⍺, and IL-6.

We show that THC and CBD, but not JWH-015, exert anti-inflammatory effects on primary human monocyte apoptosis-associated speck-like protein-incorporating inflammasome formation and subsequent caspase-1 activity, contributing to suppressed IL-1β production. In addition, mRNA expression of IL1B, CASP1, NLRP3, and PYCARD were unaffected by THC. Minimal THC effects were observed on TLR8-mediated AIM2 mRNA expression.

Collectively, results from these studies suggest THC and CBD may be useful in mitigating IL-1β-mediated acute or chronic inflammation.

SIGNIFICANCE STATEMENT: This current investigation aimed to understand the role of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in mediating virally activated CD16+ monocyte inflammatory cytokine production. Further, the results indicated that THC and CBD selectively suppress monocyte interleukin 1β production, though THC is more efficacious, through its maturation, as evidenced by suppressed caspase-1 activity and apoptosis-associated speck-like protein-incorporating inflammasome formation.

This work provides evidence to support that THC, and to an extent CBD, exert anti-inflammatory effects that could be useful in mitigating monocyte interleukin 1β-mediated chronic inflammation.”

https://pubmed.ncbi.nlm.nih.gov/40553974/

https://jpet.aspetjournals.org/article/S0022-3565(25)39828-9/abstract

Effect of Cannabidiol and Δ9-tetrahydrocannabinol on Anti-Inflammatory Lipid Mediator Synthesis in Humans

pubmed logo

“Background: Eicosanoids-lipid mediators derived from polyunsaturated fatty acids such as arachidonic acid-have a notable role in inflammatory signaling. Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) have been shown in preclinical studies to modulate inflammatory pathways the modulating the enzymes that generate eicosanoids, namely lipoxygenase (LOX), cyclooxygenase (COX), and cytochrome P450 (CYP450). 

Methods: This present study aimed to investigate how CBD and THC effect plasma levels of eicosanoids generated through LOX, COX, and cytochrome P450 (CYP450) pathways. Using plasma sample data from multiple clinical studies, we tested the hypothesis that high-CBD cannabis use would increase eicosanoid levels compared with high-THC cannabis. 

Results: Following cannabis use, high-CBD cannabis led to a rise in plasma eicosanoids, particularly lipoxins, while high-THC cannabis did not. 

Conclusions: CBD promoted anti-inflammatory eicosanoid production via the 15-LOX pathway, therefore supporting the potential role of CBD as a therapeutic candidate for inflammatory diseases.”

https://pubmed.ncbi.nlm.nih.gov/40552985/

https://www.liebertpub.com/doi/10.1089/can.2024.0175

Is highly purified cannabidiol a treatment opportunity for drug-resistant epilepsy in subjects with typical Rett syndrome and CDKL5 deficiency disorder?

pubmed logo

“Objective: This study aimed to evaluate the efficacy and safety of adjunctive, highly purified Cannabidiol (Epidiolex®) in individuals with drug-resistant epilepsy (DRE) due to genetically determined typical Rett Syndrome (RTT) and CDKL5 Deficiency Disorder (CDD).

Methods: We recruited subjects with genetically confirmed typical RTT and CDD with drug-resistant seizures who received add-on treatment with highly purified Cannabidiol (CBD) through a national collaboration group. CBD treatment was titrated from 5 to 20 mg/kg/day; concurrent antiseizure medications (ASMs) could have been adjusted as clinically indicated.

Results: We enrolled 27 subjects (26 females), carrying a MECP2 genetic variant (14 subjects, 51.9%) or a CDKL5 genetic variant (13 subjects, 48.1%). Median age [IRQ] of individuals was 10.5 [7.9, 18.5] years. The median dose of CBD [IRQ] at last follow-up was 15 [11.12, 18.8] mg/kg/day, in association with a mean of 3 ASMs (range 2-4). The median duration of treatment was 14 [8.5, 20] months. Although not reaching a significant statistical effect, CBD reduced the incidence of seizures with respect to the baseline in 18/27 (66.6%) subjects, with 7 (25.9%) showing a seizure reduction >75%, and 11 (40.7%) >50%. The most relevant adverse events were somnolence seen in 3 subjects, irritability/agitation in 2 subjects, loss of appetite in 2 subjects, and insomnia in 1 individual. Caregivers reported an improvement in attention and reactivity in 12 subjects (44.4%), in sleep quality in 5 subjects (18.5%), and in motor aspects in 3 patients (11.1%).

Significance: CBD resulted effective in reducing seizure frequency in 66.6% of the study sample, regardless of the pathogenic variant; side effects were mild, and caregivers reported an improvement in behavioral and motor features.

Plain language summary: This study explored the use of highly purified Cannabidiol (CBD, Epidiolex®) as an add-on therapy for individuals with drug-resistant epilepsy due to Rett Syndrome (RTT) or CDKL5 Deficiency Disorder (CDD). Twenty-seven participants received CBD alongside their usual ASMs. After a median treatment duration of 14 months, 66.6% experienced fewer seizures, with some showing over 75% reduction. Side effects were generally mild, mainly sleepiness or irritability. Notably, caregivers reported improvements in attention, responsiveness, sleep, and motor function. While results were not statistically significant, they suggest CBD may benefit seizure control and quality of life in RTT and CDD patients.”

https://pubmed.ncbi.nlm.nih.gov/40543048/

“Many caregivers observed positive changes beyond seizure control, including better attention, improved sleep, and enhanced motor function.”

https://onlinelibrary.wiley.com/doi/10.1002/epi4.70078