“Objective: Emerging evidence suggests lipid metabolism dysregulation contributes to autism spectrum disorders (ASD), with the endocannabinoid system (cannabinoid receptors CB1R/CB2R) implicated in lipid homeostasis. This study investigated whether CB1R/CB2R activation improves hippocampal lipid metabolism and ASD-like behaviors in a valproic acid (VPA)-induced ASD rat model.
Methods: Male offspring from dams exposed to VPA (600 mg/kg, i.p.) received the CB1R agonist ACPA (0.1 mg/kg) or the CB2R agonist AM1241 (3 mg/kg) from postnatal days 21-27. ASD-like behaviors (marble burying, self-grooming, social interaction, open-field tests) and hippocampal lipid profiles (UPLC-MS/MS) were analyzed.
Results: VPA-exposed rats displayed heightened repetitive behaviors, social deficits, and hyperactivity, all significantly alleviated by ACPA and AM1241. Lipidomics revealed marked reductions in hippocampal phosphatidylcholines, lysophosphatidylcholines, fatty acids, sphingomyelins, ceramides, and phosphatidylethanolamines in VPA rats. Both agonists restored lipid levels to near normal, comparable to controls.
Conclusions: CB1R/CB2R activation ameliorates behavioral abnormalities and rectifies hippocampal lipid dysregulation in VPA-induced ASD models, highlighting cannabinoid receptors as potential therapeutic targets for ASD-associated metabolic disturbances.”
https://pubmed.ncbi.nlm.nih.gov/40852923/
“This study provides new evidence linking ASD-like behaviors, lipid metabolism abnormalities, and endocannabinoid system regulation. Our results demonstrated that CB1R and CB2R activation alleviated VPA-induced ASD-like behaviors and restored disrupted lipid profiles in the hippocampus, suggesting a potential therapeutic approach for ASD. Further research should explore the molecular mechanisms underlying CB1R- and CB2R-mediated lipid regulation and their implications for ASD treatment strategies.”