Identification of SARS-CoV-2 Main Protease Inhibitors from a Library of Minor Cannabinoids by Biochemical Inhibition Assay and Surface Plasmon Resonance Characterized Binding Affinity


“The replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by its main protease (Mpro), which is a plausible therapeutic target for coronavirus disease 2019 (COVID-19). Although numerous in silico studies reported the potential inhibitory effects of natural products including cannabis and cannabinoids on SARS-CoV-2 Mpro, their anti-Mpro activities are not well validated by biological experimental data. Herein, a library of minor cannabinoids belonging to several chemotypes including tetrahydrocannabinols, cannabidiols, cannabigerols, cannabichromenes, cannabinodiols, cannabicyclols, cannabinols, and cannabitriols was evaluated for their anti-Mpro activity using a biochemical assay. Additionally, the binding affinities and molecular interactions between the active cannabinoids and the Mpro protein were studied by a biophysical technique (surface plasmon resonance; SPR) and molecular docking, respectively. Cannabinoids tetrahydrocannabutol and cannabigerolic acid were the most active Mpro inhibitors (IC50 = 3.62 and 14.40 μM, respectively) and cannabigerolic acid had a binding affinity KD=2.16×10-4 M). A preliminary structure and activity relationship study revealed that the anti-Mpro effects of cannabinoids were influenced by the decarboxylation of cannabinoids and the length of cannabinoids’ alkyl side chain. Findings from the biochemical, biophysical, and computational assays support the growing evidence of cannabinoids’ inhibitory effects on SARS-CoV-2 Mpro.”

“In summary, the inhibitory effects of a collection of cannabinoids on SARS-CoV-2 3CL Mpro were screened by a biochemical assay. Several minor cannabinoids (e.g., THCB and CBGA) showed promising anti-Mpro activity. In addition, we observed that decarboxylated cannabinoids, such as CBG and CBD, showed undermined inhibition capacity, as compared to the precursing cannabinoid acids (i.e., CBGA and CBDA, respectively). This SAR was supported by the binding affinities between these cannabinoids and the Mpro protein obtained from the SPR assays. Furthermore, the impact of the length of the alkyl side chain of cannabinoids on their anti-Mpro activity was explored. Our study is the first to evaluate the anti-Mpro activity of minor cannabinoids and their mechanisms of action, which contribute to a better understanding of cannabinoids’ potential roles in the management of COVID-19.”

Leave a Reply

Your email address will not be published. Required fields are marked *