“Background/Objectives: The expanding focus on novel therapeutic pathways for long-term pain relief has directed interest toward compounds obtained from Cannabis sativa. This study evaluated the antinociceptive potential of cannabigerol-enriched extract (CBG) in models of acute and chronic hypernociception, along with morphological outcomes.
Methods: Formalin and hot plate tests were used on male Swiss mice to assess acute oral antinociception. To the chronic pain model, 8-week-old male Wistar rats underwent spinal nerve ligation (SNL), and CBG was administered orally by gavage once daily for 14 days.
Results: CBG reduced nociceptive responses in the formalin test and hot plate tests, mainly at a dose of 30 mg/kg, showing antinociceptive activity. CBG attenuated SNL-induced thermal and mechanical hypersensitivity, accompanied by reduced microglial density and spinal morphological changes. Importantly, cannabinoid receptor type 2 (CB2R) signaling contributed to the antinociceptive effects of orally administered CBG, whereas cannabinoid receptor type 1 (CB1R), Brain-Derived Neurotrophic Factor (BDNF), and Tumor Necrosis Factor (TNF) did not appear to play major roles under our experimental conditions.
Conclusions: Collectively, these findings support CBG as a promising alternative for chronic pain management.”
https://pubmed.ncbi.nlm.nih.gov/41155621/
“In summary, our study provides robust evidence that CBG exerts potent antinociceptive effects across acute, inflammatory, and neuropathic pain models.
Collectively, these results highlight CBG as a promising candidate for pain management and support further translational studies.”