Cannabinoid receptor stimulation is anti-inflammatory and improves memory in old rats

“The number of activated microglia increase during normal aging. Stimulation of endocannabinoid receptors can reduce the number of activated microglia, particularly in the hippocampus, of young rats infused chronically with lipopolysaccharide (LPS). In the current study we demonstrate that endocannabinoid receptor stimulation by administration of WIN-55212-2 (2 mg/kg/day) can reduce the number of activated microglia in hippocampus of aged rats and attenuate the spatial memory impairment in the water pool task. Our results suggest that the action of WIN-55212-2 does not depend upon a direct effect upon microglia or astrocytes but is dependent upon stimulation of neuronal cannabinoid receptors. Aging significantly reduced cannabinoid type 1 receptor binding but had no effect on cannabinoid receptor protein levels. Stimulation of cannabinoid receptors may provide clinical benefits in age-related diseases that are associated with brain inflammation, such as Alzheimer’s disease.”

“Our results are consistent with the hypothesis that CB receptors on hippocampal neurons modulate glutamatergic and GABAergic function and this leads to reduced microglia activation. This mechanism may underlie the neuroprotective effects of cannabinoids”.

“Importantly, the benefits of cannabinoid receptor stimulation occurred at a dose that did not impair performance in a spatial memory task, indeed the performance of aged rats was significantly improved. This finding is particularly relevant for elderly for patients suffering with diseases associated with brain inflammation, e.g. AD, Parkinson’s disease or multiple sclerosis. The current report is the first to our knowledge to demonstrate the anti-inflammatory actions of cannabinoid therapy in aged animals and strongly advocate an cannabinoid-based therapy for neuroinflammation-related diseases, as well as a potential tool to reduce the impairment in memory processes occurring during normal aging.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586121/

Leave a Reply

Your email address will not be published. Required fields are marked *