Medical Marijuana and Opioid Usage: An Analysis of Patient Perceptions in Louisiana

pubmed logo

“Background: The opioid crisis has continued in the United States, resulting in a healthcare crisis. Medical marijuana (MM) offers an alternative to those with addictions or in search of pain and inflammation management without the negative aspects of opioids. 

Methods: A survey of more than 2,000 Louisianians on the frequency and amount of MM use revealed significant relationships between race, age, reason for use, prescription use, and whether they stopped using MM, as well as time in the MM program and the method of ingestion. 

Results: Respondents reported lower levels of pain with MM usage by an average of 3.4 points on a ten-point scale (Z = -35.77, ρ ≤ .001). Those using prescriptions for pain were 1.5 times more likely to use MM less frequently (OR = 1.524, 95% CI: 1.114 – 2.074, ρ ≤ .01). Concordantly, those reporting that they had stopped using prescriptions for pain increased the odds of using more MM by 26.5 percent (OR = .735, 95% CI: .586 – .923, ρ ≤ .001). 

Conclusions: These relationships support the idea that MM substitutes for prescription painkillers.”

https://pubmed.ncbi.nlm.nih.gov/41136335/

https://www.tandfonline.com/doi/full/10.1080/10826084.2025.2575429

Proof of concept for high-dose Cannabidiol pretreatment to antagonize opioid induced persistent apnea in mice

pubmed logo

“Background: Opioid related fatalities remain a public health crisis in the US. Currently, the only way to restore breathing following an opioid induced persistent apnea is with the administration of the opioid antagonist naloxone, but it also reverses analgesia, euphoria, and induces precipitated withdrawal in opioid dependent individuals.

Methods: Using whole-body plethysmography, we assessed changes in breathing frequency in awake behaving mice resulting from a single fentanyl dose (50 mg/kg i.p.) that followed i.p. pretreatment with saline, vehicle, naloxone (100 mg/kg), cannabidiol (CBD) (250 mg/kg), or CBD + naloxone. Then we assessed the delay to opioid-induced persistent apnea (OIPA) and the median lethal dose (LD50) of fentanyl during a continuous i.c.v. infusion of fentanyl (100 ng/min), in urethane anesthetized mice, following pretreatment with saline, vehicle, naloxone (100 mg/kg), CBD (250 mg/kg), or CBD + naloxone i.p.

Results: Here we show acute pretreatment with CBD is as effective as naloxone at preventing opioid-induced respiratory depression from fentanyl in awake mice, and increasing LD50 of fentanyl in urethane anesthetized mice. When pre-administered together, CBD + naloxone, increased LD50 of fentanyl even more than CBD or naloxone alone in urethane anesthetized mice.

Conclusion: CBD may be an effective preventative therapy for OIPA by increasing the time before apnea onset and potentially enhancing the efficacy of naloxone as an additional strategy to save lives.”

https://pubmed.ncbi.nlm.nih.gov/41132595/

“This proof of concept using CBD as a prophylactic therapeutic for prevention of fatal OIPA in mice has considerable potential for public health benefit.”

https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1654787/full

Cannabidiol alleviates methamphetamine addiction via targeting ATP5A1 and modulating the ATP-ADO-A1R signaling pathway

pubmed logo

“Cannabidiol (CBD), a non-psychoactive cannabinoid, shows great promise in treating methamphetamine (METH) addiction. Nonetheless, the molecular target and the mechanism through which CBD treats METH addiction remain unexplored.

Herein, CBD was shown to counteract METH-induced locomotor sensitization and conditioned place preference. Additionally, CBD mitigated the adverse effects of METH, such as cristae loss, a decline in ATP content, and a reduction in membrane potential. Employing an activity-based protein profiling approach, a target fishing strategy was used to uncover CBD’s direct target.

ATP5A1, a subunit of ATP synthase, was identified and validated as a CBD target. Moreover, CBD demonstrated the ability to ameliorate METH-induced ubiquitination of ATP5A1 via the D376 residue, thereby reversing the METH-induced reduction of ATP5A1 and promoting the assembly of ATP synthase. Pharmacological inhibition of the ATP efflux channel pannexin 1, blockade of ATP hydrolysis by a CD39 inhibitor, and blocking the adenosine A1 receptor (A1R) all attenuated the therapeutic benefits of CBD in mitigating METH-induced behavioral sensitization and CPP. Moreover, the RNA interference of ATP5A1 in the ventral tegmental area resulted in the reversal of CBD’s therapeutic efficacy against METH addiction.

Collectively, these data show that ATP5A1 is a target for CBD to inhibit METH-induced addiction behaviors through the ADO-A1R signaling pathway.”

https://pubmed.ncbi.nlm.nih.gov/41132843/

“This study verifies that ATP5A1 directly binds with CBD both in vitro and in vivo, counteracting METH-triggered ATP5A1 ubiquitination and enhancing the assembly of ATP synthase, thereby preventing METH-induced mitochondrial damage. Additionally, CBD inhibits METH-induced addictive behaviors through the ADO–A1R signaling pathway. The results indicate that CBD alleviates methamphetamine addiction by targeting ATP5A1. Besides METH, CBD has shown potential therapeutic effects on addiction to opioids18 and THC66. This implies that CBD has therapeutic potential for various forms of substance abuse. Consequently, ATP5A1 may serve as a target in the treatment of polysubstance use disorders, which warrants further exploration.”

https://www.sciencedirect.com/science/article/pii/S221138352500560X?via%3Dihub

The Cannabinoid System as a Potential Novel Target for Alcohol-Associated Liver Disease: A Propensity-Matched Cohort Study

pubmed logo

“Background: Alcohol-associated liver disease (ALD) is a leading cause of liver-related morbidity and mortality, yet effective therapeutic options remain limited. Preclinical data suggest that modulation of the hepatic endocannabinoid system, particularly via cannabidiol (CBD), may reduce alcohol-induced liver injury. Due to CBD’s limited clinical use, we sought to evaluate the association between cannabis use and ALD risk among patients with alcohol use disorder (AUD).

Methods: Using the TriNetX US Collaborative Network, we identified adult patients with AUD between 2010 and 2022. Three cohorts were constructed: cannabis use disorder (CUD), cannabis users without cannabis abuse or dependence (CU) and non-cannabis users (non-CU). Outcomes included ALD, hepatic decompensation and composite all-cause mortality over 3 years. Incidence and hazard ratios were calculated using Kaplan-Meier analysis and Cox regression.

Results: After matching, 33 114 patients were included in each of the CUD and non-CU groups. Compared to non-CU, CUD was associated with a lower risk of ALD (HR 0.60, 95% CI 0.53-0.67; p < 0.001), hepatic decompensation (HR 0.83, 95% CI 0.73-0.95; p =0.005) and all-cause mortality (HR 0.86, 95% CI 0.80-0.94; p < 0.001) among individuals with AUD. Although CU was associated with lower risks of ALD, its risks of hepatic decompensation and all-cause mortality were similar to those of the non-CU cohort with AUD.

Conclusion: In this propensity-matched cohort study of patients with AUD, cannabis use was associated with a reduced risk of ALD, with the greatest risk reduction seen in patients with CUD compared to CU and non-CU. Our findings suggest that modulation of cannabinoid receptors may offer a new target for the development of pharmacological therapies for ALD.”

https://pubmed.ncbi.nlm.nih.gov/41117396/

  • “Cannabis use was linked to lower risks of ALD, liver-related complications and death compared to non-cannabis users.
  • These findings suggest the cannabinoid system may represent a promising therapeutic target for ALD.”

https://onlinelibrary.wiley.com/doi/10.1111/liv.70401

Tetrahydrocannabivarin (THCV) Dose Dependently Blocks or Substitutes for Tetrahydrocannabinol (THC) in a Drug Discrimination Task in Rats

pubmed logo

“Delta-9-Tetrahydrocannabivarin (THCV), a naturally occurring cannabinoid and structural analog of THC, exhibits a dual pharmacological profile as a CB1 receptor agonist/antagonist and a partial CB2 agonist. This study evaluated the effects of THCV in a THC discrimination model in rats. Male Sprague-Dawley rats (n = 16, 300-340 g, PND60) were trained under a fixed ratio 20 (FR20) schedule to discriminate THC (3 mg/kg) from vehicle. Substitution tests were conducted with THC (0.325-3 mg/kg), THCV (0.75-6 mg/kg), and THC-THCV combinations. THCV produced an inverted U-shaped substitution curve, significantly differing from vehicle (p = 0.008). At 3 mg/kg, THCV partially substituted for THC (54.6% ± 17.82, p = 0.003). Response rate significantly increased during the substitution test with 3 mg/kg of THCV (p = 0.042). THCV (6 mg/kg) reversed THC (0.75 mg/kg)-induced responding (p = 0.040), with no significant change in response rate (p = 0.247). However, THCV combined with THC (1.5 mg/kg) affected response rates (p = 0.012), with 6 mg/kg significantly reducing rates vs. 3 mg/kg (p = 0.013). Blood THC and 11-OH-THC levels remained unchanged when THC was combined with THCV. The findings suggest THCV can partially mimic or block THC’s discriminative effects in a dose-dependent manner, possibly acting as a partial CB1 agonist.”

https://pubmed.ncbi.nlm.nih.gov/41008636/

“Taken together, our findings highlight THCV’s unique pharmacological profile, characterized by partial agonism dose-dependent substitution for THC, and antagonism at higher doses. Importantly, THCV substituted for THC in a graded manner without evidence of pharmacokinetic interactions, and it also produced stimulant-like effects that distinguish it from THC. These results suggest that THCV may act as a dose-dependent modulator of cannabinoid receptor activity, capable of both mimicking and opposing THC’s discriminative stimulus effects. Such bidirectional properties are consistent with its complex receptor pharmacology and underscore the importance of dose in determining behavioral outcomes. Future studies should expand on these findings by examining sex- and strain-dependent variability, assessing the role of CB1 and CB2 receptor mechanisms using antagonist approaches, and exploring THCV’s actions across a broader range of behavioral paradigms, including those related to reward, cognition, and feeding behavior. Together, these efforts will help to clarify the pharmacology of THCV and further delineate its position within the cannabinoid spectrum.”

https://www.mdpi.com/2218-273X/15/9/1329

Cannabidiol attenuates heroin seeking in male rats associated with normalization of discrete neurobiological signatures within the nucleus accumbens with subregional specificity

pubmed logo

“Background: Opioid use disorder is a chronic relapsing condition characterized by cycles of compulsive drug use, abstinence, and relapse. Cannabidiol (CBD), a non-intoxicating cannabinoid, is under investigation as an anti-relapse treatment. CBD attenuates cue-induced heroin-seeking in a rodent model of relapse, and reduces craving and anxiety induced by drug-associated cues in abstinent individuals with heroin use disorder. The neurobiological mechanisms by which CBD may exert its anti-relapse effects are unknown.

Methods: The objective of the current study was to evaluate the effects of CBD administration on heroin-seeking behavior in conjunction with transcriptomic profiling in the nucleus accumbens core (NAcC) and shell (NAcS).

Results: Heroin-trained animals exhibited high levels of cue-induced heroin-seeking behavior. Importantly, CBD attenuated cue-induced heroin-seeking behaviors. Postmortem RNA-sequencing of the NAcC and NAcS revealed shared transcriptomic alterations the NAc subregions in response to heroin, with a more robust impact of heroin in the NAcS. Though CBD had minimal impact on the heroin-induced perturbations in the NAcC, it normalized components of the transcriptomic signature altered by heroin in both NAc subregions including transcripts that correlated with heroin-seeking behavior. In contrast, CBD normalized a particular subset of NAcS genes that correlated to heroin-seeking behavior. Those genes were specifically linked to the extracellular matrix, astrocyte function, and their upstream regulators related to immune function.

Conclusion: These findings underscore the NAc subregional signatures of heroin-induced neurobiological perturbations and provide novel biological targets relevant for CBD’s apparent anti-relapse effects.”

https://pubmed.ncbi.nlm.nih.gov/40992584/

https://linkinghub.elsevier.com/retrieve/pii/S0006322325014623

Cannabis administration is associated with reduced alcohol consumption: Evidence from a novel laboratory co-administration paradigm

pubmed logo

“Background: Alcohol and cannabis co-use is increasingly prevalent across the U.S., concomitant with trends towards recreational cannabis legalization. While some studies have shown that cannabis co-use is associated with reductions in alcohol consumption (i.e., substitution), others have observed increases in alcohol intake (i.e., complementarity) or no change. This study aims to address this gap in the literature through investigating the effects of legal-market cannabis on alcohol consumption and craving in the laboratory.

Method: Leveraging a within-subjects design, we enrolled non-treatment seeking individuals who use both alcohol and cannabis (n = 61) to complete two laboratory sessions, wherein they were provided an alcohol priming drink alone or after self-administering cannabis. Participants were then given the opportunity to self-administer up to 4 additional drinks. We assessed differences in alcohol self-administration and craving between sessions.

Results: Cannabis self-administration was associated with a significant reduction in number of drinks self-administered. Further, exploratory analyses revealed that individuals who drank less after using cannabis (“substituters”, n = 23) experienced reductions in craving after using cannabis and alcohol compared to alcohol alone, whereas individuals who drank the same number of drinks after using cannabis show minimal differences in craving. There were no significant group differences in blood-THC concentration post-cannabis use.

Conclusion: Results indicate that for some individuals who drink heavily, cannabis may serve as a substitute for alcohol, and craving reduction is a potential mechanism through which this could occur.”

https://pubmed.ncbi.nlm.nih.gov/40915022/

“Cannabis use was associated with a reduction in alcohol intake.”

https://www.sciencedirect.com/science/article/abs/pii/S0376871625003138?via%3Dihub

Cannabis Use Moderates Methamphetamine- and HIV-Related Inflammation: Evidence from Human Plasma Markers

pubmed logo

“Background: Methamphetamine use, which is disproportionately prevalent among people with HIV, increases risk for cardio- and neurovascular pathology through persistent immune activation and inflammation. Preclinical studies indicate that cannabinoids may reduce markers of pro-inflammatory processes, but data from people with chronic inflammatory conditions are limited. We examined potentially interacting associations of lifetime methamphetamine use disorder (MUD), recent cannabis use, and HIV with four plasma markers of immune and inflammatory functions.

Method: Participants with HIV (PWH, n = 86) and without HIV (PWoH, n = 148) provided urine and blood samples and completed neuromedical, psychiatric, and substance use assessments. Generalized linear models examined main and conditional associations of lifetime MUD, past-month cannabis use, and HIV with plasma concentrations of CXCL10/IP-10, CCL2/MCP-1, ICAM-1, and VCAM-1.

Results: PWH displayed higher CXCL10/IP-10 than PWoH. Past-month cannabis use was independently associated with lower CXCL10/IP-10 levels and conditionally lower CCL2/MCP-1, ICAM-1, and VCAM-1 levels among people with lifetime MUD, but only PWoH displayed cannabis-associated lower VCAM-1 levels.

Conclusions: Human plasma sample evidence suggests that cannabis use is associated with lower levels of immune and inflammatory molecules in the context of MUD or HIV. Cannabinoid pathways may be worthwhile clinical targets for treating sequelae of chronic inflammatory conditions.”

https://pubmed.ncbi.nlm.nih.gov/40872856/

“METH use disorder is highly prevalent in PWH, and both can have significant effects on immune function and pro-inflammatory processes that lead to significant central nervous system consequences, despite modern advances in anti-retroviral therapy effectiveness and tolerability. Results from this study support prior findings that METH and HIV disease confer risk for negative outcomes via their influence on chronic inflammatory processes, and we provide novel evidence from human plasma samples that cannabis use is associated with reduced levels of immune and inflammatory molecules in the context of chronic METH use or HIV infection (CCL2/MCP-1, VCAM-1, ICAM-1) and independent of METH use and HIV (CXCL10/IP-10). Associations between cannabis use and lower indices of inflammatory pathology from HIV and MUD point toward cannabinoid pathways as promising therapeutic targets that warrant further study.”

https://www.mdpi.com/1999-4915/17/8/1143

Substance Abuse and Cognitive Decline: The Critical Role of Tau Protein as a Potential Biomarker

pubmed logo

“Tau protein is essential for the structural stability of neurons, particularly through its role in microtubule assembly and axonal transport. However, when abnormally hyperphosphorylated or cleaved, Tau can aggregate into insoluble forms that disrupt neuronal function, contributing to the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD).

Emerging evidence suggests that similar Tau-related alterations may occur in individuals with chronic exposure to psychoactive substances. This review compiles experimental, clinical, and postmortem findings that collectively indicate a substance-specific influence on Tau dynamics.

Alcohol and opioids, for instance, promote Tau hyperphosphorylation and fragmentation through the activation of kinases such as GSK-3β and CDK5, as well as proteases like caspase-3, leading to neuroinflammation and microglial activation. Stimulants and dissociatives disrupt insulin signaling, increase oxidative stress, and impair endosomal trafficking, all of which can exacerbate Tau pathology.

In contrast, cannabinoids and psychedelics may exert protective effects by modulating kinase activity, reducing inflammation, or enhancing neuroplasticity.

Psychedelic compounds such as psilocybin and harmine have been demonstrated to decrease Tau phosphorylation and facilitate cognitive restoration in animal models. Although the molecular mechanisms differ across substances, Tau consistently emerges as a convergent target altered in substance-related cognitive disorders.

Understanding these pathways may provide not only mechanistic insights into drug-induced neurotoxicity but also identify Tau as a valuable biomarker and potential therapeutic target for the prevention or treatment of cognitive decline associated with substance use.”

https://pubmed.ncbi.nlm.nih.gov/40806766/

“Alcohol, methamphetamine, and opioids consistently elicited Tau hyperphosphorylation in cortical and subcortical regions tied to executive function, reward processing, and memory. In contrast, certain cannabinoids and psychedelics demonstrated potential neuroprotective properties, modulating Tau-related signaling in ways that reduced aberrant phosphorylation and enhanced synaptic resilience in preclinical models. “

https://www.mdpi.com/1422-0067/26/15/7638

Opioid reduction in patients with chronic non-cancer pain undergoing treatment with medicinal cannabis

pubmed logo

“Introduction: Opioid sparing by co-prescription of cannabinoids may enable patients to reduce their opioid consumption prescribed for chronic benign pain.

Methods: One cohort attending a small private pain clinic (N = 102), already taking opioids, was co-prescribed cannabinoids and another cohort (N = 53) attending a separate pain clinic nearby received only opioids. The two groups were studied prospectively for a year before their drug consumption was assessed.

Results: At baseline, median opioid consumption was 40 mg/day in both cohorts. Medicinal cannabis was administered daily in an oil formulation usually starting at 2.5 mg/day and was titrated to maximize benefits. At 12 months, the median dose contained 15 mg delta-9-tetrahydrocannabinol and 15 mg cannabidiol. At one-year follow-up, 46 of 102 cases had dropped out compared with only one of 53 controls. Opioid consumption had decreased significantly at one-year follow-up, the final median dose being lower in cases (2.7 mg/day) than controls (42.3 mg/day) (p < 0.05 in an intention-to-treat analysis). Disability and insomnia had also decreased in cases.

Conclusion: The introduction of cannabinoids can produce useful reductions in opioid consumption in real-world settings, with additional benefits for disability and insomnia. However, this treatment is tolerated by only a subgroup of patients.”

https://pubmed.ncbi.nlm.nih.gov/40788193/

“Plain language summary

Morphine-like drugs (opioids) decrease pain but can cause severe breathing problems and death if these drugs are consumed in excessive amounts. Stopping these drugs suddenly (going “cold turkey”) can cause severe adverse effects and, as time goes on, increasing amounts may be required to reduce pain. It might be possible to reduce opioid consumption by also taking medicinal cannabis; otherwise, reduction can be difficult to achieve. Cannabis treatment is safe when the hallucinatory component of cannabis is kept to low levels, causing minimal euphoric effects (a “stoned” sensation).In this study, two groups of patients with chronic pain were studied. Both were taking opioid drugs, but one group also took medicinal cannabis. About half of the medicinal cannabis group were not able to keep taking it due to unpleasant side effects. In the remainder, opioid consumption decreased significantly after both 6 and 12 months. Physical activity and sleep also improved. These findings indicate that medicinal cannabis can help patients to reduce their opioid consumption and improve their physical activity and sleep.”

“These findings indicate that medicinal cannabis can help patients to reduce their opioid consumption and improve their physical activity and sleep.”

https://www.tandfonline.com/doi/full/10.1080/17581869.2025.2544511