Treatment With Full-Spectrum Cannabidiol Oil Improved the Pathological Findings of Dystrophic Mutant Mice

pubmed logo

“Introduction/aims: Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the DMD gene, making muscle fibers susceptible to contraction-induced membrane damage. Given the potential beneficial action of cannabidiol (CBD), we evaluated the in vitro effect of full-spectrum CBD oil on the viability of dystrophic muscle fibers and the in vivo effect on myopathy of the mdx mouse, a DMD model.

Methods: In vitro, dystrophic cells from the mdx mouse were treated with full-spectrum CBD oil and assessed with cell viability and cytotoxic analyses. In vivo, fourteen-day-old mdx mice received 10 mg/kg/day of the full-spectrum CBD oil for 14 days. We analyzed creatine kinase (CK) levels, liver damage markers, and histopathology of the diaphragm (DIA) and quadriceps (QUA [myonecrotic fibers with positive IgG staining, regenerated fibers/central nuclei, the minimum Feret’s diameter, the fibrosis area, the inflammatory area, the presence of macrophages, and NF-kappa B content]).

Results: In vitro treatment with full-spectrum CBD oil showed a dose-dependent cytotoxic effect; however, in vivo 10 mg/kg treatment was safe and effectively improved DMD histopathological assessment parameters in DIA and QUA: reduction of central nuclei: 1.7% ± 2.0% versus 22.4% ± 5.3% and 11.1% ± 10.7% versus 32.3% ± 4.6%; reduction of IgG+ myofibers: 0.6% ± 0.7% versus 8.4% ± 1.6% and 0.9% ± 0.3% versus 7.5% ± 1.0%; increase in myofiber size: 85.2 ± 3.2 versus 64.3 ± 4.0 μm and 106.5 ± 8.6 versus 81.2 ± 4.8 μm; decrease in inflammatory area: 6.2% ± 2.7% versus 15.1% ± 2.6% and 5.3 ± 4.1 versus 17.3% ± 2.8%; reduced macrophage area: 0.05% ± 0.1% versus 10.8% ± 4.3% and 1.0% ± 0.7% versus 10.3% ± 4.9%; NF-κB levels: 0.6% ± 0.1% versus 1.7% ± 0.2% and 1.7% ± 0.1% versus 5.2% ± 2.1%; and fibrosis: 5.6% ± 1.8% versus 12.0% ± 3.7% and 1.3% ± 0.5% versus 4.7% ± 1.5%. It also reduced serum CK.

Discussion: Full-spectrum CBD oil may represent a promising new approach to treating DMD, but its potential toxicity must be considered.”

https://pubmed.ncbi.nlm.nih.gov/39840534/

https://onlinelibrary.wiley.com/doi/10.1002/mus.28337

Neuroprotection of Cannabidiol, Its Synthetic Derivatives and Combination Preparations against Microglia-Mediated Neuroinflammation in Neurological Disorders

molecules-logo

“The lack of effective treatment for neurological disorders has encouraged the search for novel therapeutic strategies. Remarkably, neuroinflammation provoked by the activated microglia is emerging as an important therapeutic target for neurological dysfunction in the central nervous system. In the pathological context, the hyperactivation of microglia leads to neuroinflammation through the release of neurotoxic molecules, such as reactive oxygen species, proteinases, proinflammatory cytokines and chemokines.

Cannabidiol (CBD) is a major pharmacologically active phytocannabinoids derived from Cannabis sativa L. CBD has promising therapeutic effects based on mounting clinical and preclinical studies of neurological disorders, such as epilepsy, multiple sclerosis, ischemic brain injuries, neuropathic pain, schizophrenia and Alzheimer’s disease.

A number of preclinical studies suggested that CBD exhibited potent inhibitory effects of neurotoxic molecules and inflammatory modulators, highlighting its remarkable therapeutic potential for the treatment of numerous neurological disorders. However, the molecular mechanisms of action underpinning CBD’s effects on neuroinflammation appear to be complex and are poorly understood.

This review summarises the anti-neuroinflammatory activities of CBD against various neurological disorders with a particular focus on their main molecular mechanisms of action, which were related to the downregulation of NADPH oxidase-mediated ROS, TLR4-NFκB and IFN-β-JAK-STAT pathways. We also illustrate the pharmacological action of CBD’s derivatives focusing on their anti-neuroinflammatory and neuroprotective effects for neurological disorders. We included the studies that demonstrated synergistic enhanced anti-neuroinflammatory activity using CBD and other biomolecules.

The studies that are summarised in the review shed light on the development of CBD, including its derivatives and combination preparations as novel therapeutic options for the prevention and/or treatment of neurological disorders where neuroinflammation plays an important role in the pathological components.”

https://pubmed.ncbi.nlm.nih.gov/35956911/

“Cannabinoids are a group of terpenophenolic compounds derived from the Cannabis sativa L. plant. The preclinical studies summarised in this review supported the therapeutic use of CBD in treating neurological disorders from its action in addressing microglia-mediated neuroinflammation. The findings of this review shed light on the development of CBD and relevant compounds as novel and more advantageous therapeutics to prevent or treat neurological disorders by targeting microglia-mediated neuroinflammation.”

https://www.mdpi.com/1420-3049/27/15/4961/htm


Genetic and pharmacological regulation of the endocannabinoid CB1 receptor in Duchenne muscular dystrophy.

 Nature Communications “The endocannabinoid system refers to a widespread signaling system and its alteration is implicated in a growing number of human diseases. However, the potential role of endocannabinoids in skeletal muscle disorders remains unknown. Here we report the role of the endocannabinoid CB1 receptors in Duchenne’s muscular dystrophy. In murine and human models, CB1 transcripts show the highest degree of expression at disease onset, and then decline overtime. Similar changes are observed for PAX7, a key regulator of muscle stem cells. Bioinformatics and biochemical analysis reveal that PAX7 binds and upregulates the CB1 gene in dystrophic more than in healthy muscles. Rimonabant, an antagonist of CB1, promotes human satellite cell differentiation in vitro, increases the number of regenerated myofibers, and prevents locomotor impairment in dystrophic mice. In conclusion, our study uncovers a PAX7-CB1 cross talk potentially exacerbating DMD and highlights the role of CB1 receptors as target for potential therapies.” https://www.ncbi.nlm.nih.gov/pubmed/30262909 “We propose that the endocannabinoid system participates in the development of degenerative muscle disease, through effects on muscle differentiation, regeneration, and repair processes, and suggest that CB1 receptor may represent a potential target for the adjuvant therapy of muscle dystrophies.” https://www.nature.com/articles/s41467-018-06267-1
]]>