Cannabidiol activates MAPK pathway to induce apoptosis, paraptosis, and autophagy in colorectal cancer cells

pubmed logo

“Mitogen-activated protein kinase (MAPK) activation by natural compounds is known to be involved in the induction of apoptosis, paraptosis, and autophagy.

Cannabidiol (CBD), a bioactive compound found in Cannabis sativa, is endowed with many pharmacological activities. We investigated the cytotoxic effect of CBD in a panel of colorectal cancer (CRC) cells (HT-29, SW480, HCT-116, and HCT-15).

CBD induced significant cytotoxicity as evidenced by the results of MTT assay, live-dead assay, and flow cytometric analysis. Since CBD displayed cytotoxicity against CRC cells, we examined the effect of CBD on apoptosis, paraptosis, and autophagy. CBD decreased the expression of antiapoptotic proteins and increased the Annexin-V-positive as well as TUNEL-positive cells suggesting that CBD induces apoptosis. CBD increased the expression of ATF4 (activating transcription factor 4) and CHOP (CCAAT/enhancer-binding protein homologous protein), elevated endoplasmic reticulum stress, and enhanced reactive oxygen species levels indicating that CBD also promotes paraptosis. CBD also induced the expression of Atg7, phospho-Beclin-1, and LC3 suggesting that CBD also accelerates autophagy.

Since, the MAPK pathway is a common cascade that is involved in the regulation of apoptosis, paraptosis, and autophagy, we investigated the effect of CBD on the activation of JNK, p38, and ERK pathways. CBD activated all the forms of MAPK proteins and pharmacological inhibition of these proteins reverted the observed effects.

Our findings implied that CBD could induce CRC cell death by activating apoptosis, paraptosis, and autophagy through the activation of the MAPK pathway.”

https://pubmed.ncbi.nlm.nih.gov/38358093/

https://onlinelibrary.wiley.com/doi/10.1002/jcb.30537

Anti-inflammatory effects of cannabidiol in early stages of neuroinflammation induced by high-fat diet in cerebral cortex of rats

pubmed logo

“High-fat diet (HFD) contributes to neuroinflammation forming, hence it is crucial to find safe and effective substances that are able to counteract its progress. The anti-inflammatory properties of phytocannabinoids acquired from the Cannabis plant have been widely acknowledged. We evaluated the effects of cannabidiol (CBD) treatment on induced by applying HFD early stages of neuroinflammation in Wistar rat cerebral cortex.

In our 7-week experiment, CBD was injected intraperitoneally over the last 14days at a dose of 10 mg/kg of body weight once a day. The level of arachidonic acid, a precursor to pro-inflammatory eicosanoids, decreased in all analysed lipid classes after CBD administration to the HFD group. Moreover, the extent of diminishing the activity of the omega-6 (n-6) fatty acid pathway by CBD was the greatest in diacylglycerols and phospholipids. Surprisingly, CBD was also capable of downregulating the activity of the omega-3 (n-3) pathway. The expression of enzymes involved in the synthesis of the eicosanoids was significantly increased in the HFD group and subsequently lowered by CBD. Significant changes in various cytokines levels were also discovered.

Our results strongly suggest the ability of CBD to reduce the formation of lipid inflammation precursors in rat cerebral cortex, as a primary event in the development of neurodegenerative diseases. This can raise hopes for the future use of this cannabinoid for therapeutic purposes since it is a substance lacking lasting and severe side effects.”

https://pubmed.ncbi.nlm.nih.gov/38336253/

“To summarize all of the above evidence, the CBD action suggests, that it could hold a great potential for possibly alleviating the inflammatory response by interfering with the eicosanoid synthesis process. As a compound with a fairly simple chemical structure and lipophilic qualities, it has a high ability to penetrate the blood-brain barrier, which is an obstacle that many other pharmaceuticals, whose targets are located within the brain, cannot overcome.”

“Even though the Cannabis plant has been present in the history of humankind for hundreds of years, we ought not to stop looking for new potential applications of its constituents, especially in the clinical medicine of the future, which in the first place should be safe and effective.”

https://www.sciencedirect.com/science/article/pii/S0041008X24000541?via%3Dihub

Cannabidiol improves memory and decreases IL-1β serum levels in rats with lipopolysaccharide-induced inflammation

pubmed logo

“Memory improving and anti-inflammatory properties of cannabidiol (CBD) were investigated in an experimental model of lipopolysaccharide (LPS)-induced inflammation.”

https://pubmed.ncbi.nlm.nih.gov/38351784/

“Cannabis sativa is a plant that has been cultivated by humans and utilized in medicine since ancient times.”

“Cannabidiol (CBD) is one of the most important Cannabis-derived molecules,”

“CBD improved spatial working and recognition memory in rats with LPS-induced inflammation. Suppression of IL-1β production could be attributed to the observed effect.”

https://foliamedica.bg/article/107259/

Targeting the Endocannabinoid System Present in the Glioblastoma Tumour Microenvironment as a Potential Anti-Cancer Strategy

pubmed logo

“The highly aggressive and invasive glioblastoma (GBM) tumour is the most malignant lesion among adult-type diffuse gliomas, representing the most common primary brain tumour in the neuro-oncology practice of adults. With a poor overall prognosis and strong resistance to treatment, this nervous system tumour requires new innovative treatment. GBM is a polymorphic tumour consisting of an array of stromal cells and various malignant cells contributing to tumour initiation, progression, and treatment response.

Cannabinoids possess anti-cancer potencies against glioma cell lines and in animal models.

To improve existing treatment, cannabinoids as functionalised ligands on nanocarriers were investigated as potential anti-cancer agents. The GBM tumour microenvironment is a multifaceted system consisting of resident or recruited immune cells, extracellular matrix components, tissue-resident cells, and soluble factors. The immune microenvironment accounts for a substantial volume of GBM tumours. The barriers to the treatment of glioblastoma with cannabinoids, such as crossing the blood-brain barrier and psychoactive and off-target side effects, can be alleviated with the use of nanocarrier drug delivery systems and functionalised ligands for improved specificity and targeting of pharmacological receptors and anti-cancer signalling pathways.

This review has shown the presence of endocannabinoid receptors in the tumour microenvironment, which can be used as a potential unique target for specific drug delivery. Existing cannabinoid agents, studied previously, show anti-cancer potencies via signalling pathways associated with the hallmarks of cancer. The results of the review can be used to provide guidance in the design of future drug therapy for glioblastoma tumours.”

https://www.mdpi.com/1422-0067/25/3/1371

“Cannabinoids may offer a more effective and tolerable treatment option for GBM patients.”

https://pubmed.ncbi.nlm.nih.gov/38338649/

Evaluating the Mechanism of Cell Death in Melanoma Induced by the Cannabis Extract PHEC-66

pubmed logo

“Research suggests the potential of using cannabinoid-derived compounds to function as anticancer agents against melanoma cells.

Our recent study highlighted the remarkable in vitro anticancer effects of PHEC-66, an extract from Cannabis sativa, on the MM418-C1, MM329, and MM96L melanoma cell lines. However, the complete molecular mechanism behind this action remains to be elucidated.

This study aims to unravel how PHEC-66 brings about its antiproliferative impact on these cell lines, utilising diverse techniques such as real-time polymerase chain reaction (qPCR), assays to assess the inhibition of CB1 and CB2 receptors, measurement of reactive oxygen species (ROS), apoptosis assays, and fluorescence-activated cell sorting (FACS) for apoptosis and cell cycle analysis.

The outcomes obtained from this study suggest that PHEC-66 triggers apoptosis in these melanoma cell lines by increasing the expression of pro-apoptotic markers (BAX mRNA) while concurrently reducing the expression of anti-apoptotic markers (Bcl-2 mRNA). Additionally, PHEC-66 induces DNA fragmentation, halting cell progression at the G1 cell cycle checkpoint and substantially elevating intracellular ROS levels.

These findings imply that PHEC-66 might have potential as an adjuvant therapy in the treatment of malignant melanoma. However, it is essential to conduct further preclinical investigations to delve deeper into its potential and efficacy.”

https://pubmed.ncbi.nlm.nih.gov/38334660/

https://www.mdpi.com/2073-4409/13/3/268

Removing barriers to accessing medical cannabis for paediatric patients

pubmed logo

“Medical cannabis (MC) may offer therapeutic benefits for children with complex neurological conditions and chronic diseases. In Canada, parents, and caregivers frequently report encountering barriers when accessing MC for their children. These include negative preconceived notions about risks and benefits, challenges connecting with a knowledgeable healthcare provider (HCP), the high cost of MC products, and navigating MC product shortages. In this manuscript, we explore several of these barriers and provide recommendations to decision-makers to enable a family-centered and evidence-based approach to MC medicine and research for children.”

https://pubmed.ncbi.nlm.nih.gov/38332979/

https://academic.oup.com/pch/article/29/1/12/7098192?login=false

Tetrahydrocannabinol and Cannabidiol in Tourette Syndrome

pubmed logo

“This randomized controlled crossover trial examined the use of oral tetrahydrocannabinol (THC) with cannabidiol (CBD) to reduce tics in patients with severe Tourette syndrome. Treatment with THC and CBD for 6 weeks led to a significant reduction in tics as measured by the total tic score on the Yale Global Tic Severity Scale, without major adverse effects.”

https://pubmed.ncbi.nlm.nih.gov/38320199/

“BACKGROUND

Tourette syndrome is characterized by chronic motor and vocal tics. There is preliminary evidence of benefit from cannabis products containing Δ9-tetrahydrocannabinol (THC) and that coadministration of cannabidiol (CBD) improves the side-effect profile and safety.

METHODS

In this double-blind, crossover trial, participants with severe Tourette syndrome were randomly assigned to a 6-week treatment period with escalating doses of an oral oil containing 5 mg/ml of THC and 5 mg/ml of CBD, followed by a 6-week course of placebo, or vice versa, separated by a 4-week washout period. The primary outcome was the total tic score on the Yale Global Tic Severity Scale (YGTSS; range, 0 to 50 [higher scores indicate greater severity of symptoms]). Secondary outcomes included video-based assessment of tics, global impairment, anxiety, depression, and obsessive-compulsive symptoms. Outcomes were correlated with plasma levels of cannabinoid metabolites. A computerized cognitive battery was administered at the beginning and the end of each treatment period.

RESULTS

Overall, 22 participants (eight female participants) were enrolled. Reduction in total tic score (at week 6 relative to baseline) as measured by the YGTSS was 8.9 (±7.6) in the active group and 2.5 (±8.5) in the placebo group. In a linear mixed-effects model, there was a significant interaction of treatment (active/placebo) and visit number on tic score (coefficient = −2.28; 95% confidence interval, −3.96 to −0.60; P=0.008), indicating a greater decrease (improvement) in tics under active treatment. There was a correlation between plasma 11-carboxy-tetrahydrocannabinol levels and the primary outcome, which was attenuated after exclusion of an outlier. The most common adverse effect in the placebo period was headache (n=7); in the active treatment period, it was cognitive difficulties, including slowed mentation, memory lapses, and poor concentration (n=8).

CONCLUSIONS

In severe Tourette syndrome, treatment with THC and CBD reduced tics and may reduce impairment due to tics, anxiety, and obsessive-compulsive disorder; although in some participants this was associated with slowed mentation, memory lapses, and poor concentration.”

https://evidence.nejm.org/doi/10.1056/EVIDoa2300012

The Therapeutic Potential and Molecular Mechanisms Underlying the Neuroprotective Effects of Sativex® – A Cannabis-derived Spray

pubmed logo

“Sativex is a cannabis-based medicine that comes in the form of an oromucosal spray. It contains equal amounts of Δ9-tetrahydrocannabinol and cannabidiol, two compounds derived from cannabis plants.

Sativex has been shown to have positive effects on symptoms of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and sleep disorders. It also has analgesic, antiinflammatory, antitumoral, and neuroprotective properties, which make it a potential treatment option for other neurological disorders.

The article reviews the results of recent preclinical and clinical studies that support the therapeutic potential of Sativex and the molecular mechanisms behind its neuroprotective benefits in various neurological disorders. The article also discusses the possible advantages and disadvantages of using Sativex as a neurotherapeutic agent, such as its safety, efficacy, availability, and legal status.”

https://pubmed.ncbi.nlm.nih.gov/38318827/

https://www.eurekaselect.com/article/138318

Topical Noneuphoric Phytocannabinoid Elixir 14 Reduces Inflammation and Mitigates Burn Progression

pubmed logo

“Introduction: Thermal injuries are caused by exposure to a wide variety of agents including heat, electricity, radiation, chemicals, and friction. Early intervention can decrease injury severity by preventing excess inflammation and mitigating burn wound progression for improved healing outcomes.

Previous studies have demonstrated that cannabinoids can trigger anti-inflammatory responses and promote wound closure.

Therefore, the purpose of this study was to investigate whether a topical application of Noneuphoric Phytocannabinoid Elixir 14 (NEPE14) containing a full complement of phytocannabinoids (< 0.3% delta-9-tetrahydrocannabinol or cannabidiol) and other phytochemicals would mitigate burn wound progression in the treatment of deep partial-thickness burn wounds.

Methods: Deep partial-thickness burns were created on the dorsum of four anesthetized pigs and treated with NEPE14, Vehicle control, Silverlon, or gauze. The burns were assessed on postburn days 4, 7, and 14. Assessments consisted of digital photographs, Laser-Speckle imagery (blood perfusion), MolecuLight imagery (qualitative bacterial load), and biopsies for histology and immunohistochemistry (interleukin six and tumor necrosis factor-α).

Results: Topical treatment with NEPE14 significantly (P < 0.001) decreased inflammation (interleukin six and tumor necrosis factor-α) in comparison to control groups. It was also demonstrated that the reduction in inflammation led to mitigation of burn wound progression. In terms of wound healing and presence of bacteria, no statistically significant differences were observed.

Conclusions: Topical treatment of deep partial-thickness burns with NEPE14 decreased wound inflammation and mitigated burn wound progression in comparison to control treatments.”

https://pubmed.ncbi.nlm.nih.gov/38320364/

https://www.journalofsurgicalresearch.com/article/S0022-4804(24)00037-4/fulltext

Cannabidiol for Postoperative Pain Control After Arthroscopic Rotator Cuff Repair Demonstrates No Deficits in Patient-Reported Outcomes Versus Placebo: 1-Year Follow-up of a Randomized Controlled Trial

pubmed logo

“Background: Cannabidiol (CBD) has been shown recently to positively affect patient pain and satisfaction immediately after arthroscopic rotator cuff repair (ARCR). However, it is unclear whether the addition of CBD to a perioperative regimen could affect postoperative outcomes.

Purpose: To evaluate patient-reported outcomes among patients who underwent ARCR and received buccally absorbed CBD or an identical placebo for early postoperative pain management at 1-year follow-up.

Study design: Randomized controlled trial; Level of evidence, 2.

Methods: Eligible patients had previously participated in a multicenter, placebo-controlled, randomized, double-blinded trial that evaluated the analgesic effects of CBD in the immediate postoperative period after ARCR. The experimental group received 25 mg of CBD 3 times/day if <80 kg and 50 mg of CBD 3 times/day if >80 kg for 14 days, with the control group receiving an identical placebo. The following outcomes were assessed at minimum 1-year follow-up: visual analog scale (VAS) for pain, American Shoulder and Elbow Surgeons (ASES) score, Single Assessment Numeric Evaluation (SANE), and patient satisfaction. The rates of achievement of the Patient Acceptable Symptom State (PASS) were compared based on ASES at latest follow-up. Continuous and categorical variables were compared with the Mann-Whitney U test and Fisher exact test, respectively.

Results: Follow-up was obtained from 83 of 99 patients (83.8%) who completed the original trial. There were no significant differences between the CBD and control groups with respect to age, sex, body mass index, rate of concomitant procedures, or number of anchors used intraoperatively. At 1-year follow-up, there were no significant differences between the CBD and control groups in VAS pain (0.8 vs 1.2, P = .38), ASES (93.0 vs 91.1, P = .71), SANE (87.6 vs 90.1, P = .24), or satisfaction (97.4 vs 95.4, P = .41). A majority of patients achieved the PASS (81.0% [CBD] vs 77.5% [control]; P = .79).

Conclusion: Perioperative use of CBD for pain control among patients undergoing ARCR did not result in any significant deficits in pain, satisfaction, or patient-reported outcomes at 1-year postoperatively compared with a placebo control group. These findings suggest that CBD can be considered in a postoperative multimodal pain management regimen without detrimental effects on outcome.”

https://pubmed.ncbi.nlm.nih.gov/38322981/

“The Cannabis sativa plant is a promising alternative for augmented pain control”

https://journals.sagepub.com/doi/10.1177/23259671231222265