“More evidence suggests that dorsal spinal cord microglia is an important site contributing to CB2 receptor-mediated analgesia. The upregulation of P2Y12 and P2Y13 purinoceptors in spinal dorsal horn microglia is involved in the development of pain behavior caused by peripheral nerve injury. However, it is not known whether the expression of P2Y12 and P2Y13 receptors at spinal dorsal horn will be influenced after CB2 receptor activation in neuropathic pain rats. Chronic constriction injury (CCI) and intrathecal ADPbetaS injection were performed in rats to induce neuropathic pain.
Category Archives: Endocannabinoid System
Effects of coadministration of low dose cannabinoid type 2 receptor agonist and morphine on vanilloid receptor 1 expression in a rat model of cancer pain.
“Morphine is widely used as an analgesic to treat moderate to severe pain, but chronic morphine use is associated with development of tolerance and dependence, which limits its analgesic efficacy. Our previous research has showed that nonanalgetic dose of a cannabinoid type 2 (CB2) receptor agonist reduced morphine tolerance in cancer pain. A previous study showed the colocalization of CB2 and transient receptor potential vanilloid 1 (TRPV1) in human and rat dorsal root ganglia (DRG) sensory neurons. Whether coadministration of a CB2 receptor agonist and morphine could reduce TRPV1 expression in morphine‑induced antinociception and tolerance in cancer pain is unclear. Therefore, we investigated the effects of coadministration of a CB2 receptor agonist AM1241 and morphine on TRPV1 expression and tolerance in cancer pain. Coadministration of AM1241 and morphine for 8 days significantly reduced morphine tolerance, as assessed by measuring paw withdrawal latency to a radiant heat stimulation, in Walker 256 tumor‑bearing rats. Repeated morphine treatment for a period of 8 days induced upregulation of the TRPV1 protein expression levels in the DRG in the tumor‑bearing rats, although no change in mRNA expression. Pretreatment with AM1241 reduced this morphine‑induced upregulation of TRPV1 and the effect was reversed by the CB2 receptor antagonist AM630. Our findings suggest that coadministration of a CB2 receptor agonist AM1241 and morphine reduced morphine tolerance possibly through regulation of TRPV1 protein expression in the DRG in cancer pain.”
https://www.ncbi.nlm.nih.gov/pubmed/28901432
https://www.spandidos-publications.com/10.3892/mmr.2017.7479
Tingenone, a pentacyclic triterpene, induces peripheral antinociception due to cannabinoid receptors activation in mice.
“Several works have shown that triterpenes induce peripheral antinociception by activation of cannabinoid receptors and endocannabinoids; besides, several research groups have reported activation of cannabinoid receptors in peripheral antinociception.
The aim of this study was to assess the involvement of the cannabinoid system in the antinociceptive effect induced by tingenone against hyperalgesia evoked by prostaglandin E2 (PGE2) at peripheral level.
The results suggest that tingenone induced a peripheral antinociceptive effect via cannabinoidreceptor activation. Therefore, this study suggests a pharmacological potential for a new analgesic drug.”
https://www.ncbi.nlm.nih.gov/pubmed/28889355
“Autism spectrum disorder (ASD) defines a group of neurodevelopmental disorders whose symptoms include impaired communication and social interaction with restricted or repetitive motor movements, frequently associated with general cognitive deficits. Although it is among the most severe chronic childhood disorders in terms of prevalence, morbidity, and impact to the society, no effective treatment for ASD is yet available, possibly because its neurobiological basis is not clearly understood hence specific drugs have not yet been developed. The endocannabinoid (EC) system represents a major neuromodulatory system involved in the regulation of emotional responses, behavioral reactivity to context, and social interaction. Furthermore, the EC system is also affected in conditions often present in subsets of patients diagnosed with ASD, such as seizures, anxiety, intellectual disabilities, and sleep pattern disturbances. Despite the indirect evidence suggestive of an involvement of the EC system in ASD, only a few studies have specifically addressed the role of the EC system in the context of ASD. This review describes the available data on the investigation of the presence of alterations of the EC system as well as the effects of its pharmacological manipulations in animal models of ASD-like behaviors.”
“The
“The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids.
The endocannabinoid system comprises