Real-Time Optical Control of CB1 Receptor Signaling In Vitro with Tethered Photoswitchable (-)- trans-Δ9-Tetrahydrocannabinol Derivatives

pubmed logo

“Understanding the intricacies of the endocannabinoid system is hindered by the lack of tools to target specific pools of CB1 receptors (CB1Rs) across diverse neural circuits associated with mood, motor function, cognition, and other physiological processes.

Herein, we introduce the first photoswitchable, orthogonal remotely tethered cannabinoid ligand, PORTL-THC24, designed to achieve cell-specific and reversible control of CB1R signaling with high spatial and temporal resolution, thereby overcoming the limitations of conventional freely diffusible ligands.

PORTL-THC24 was selectively tethered to membrane-anchored SNAP-tags expressed in live cells, and provided reversible optical control of CB1R signaling when photoswitched by UV-A irradiation. We validated the functionality of PORTL-THC24 in live Neuro2a cells using a novel real-time cAMP imaging assay, demonstrating light-dependent and reversible modulation of endogenously expressed CB1R activity. Additionally, we demonstrated that SNAP-tethered PORTL-THC24 does not induce CB1R internalization, distinguishing it from conventional, freely diffusible agonists.

Our results establish PORTL-THC24 as a powerful tool for optical control of CB1R in a spatially restricted manner, setting the stage for dissecting CB1R function in complex settings and advancing the study of cannabinoid signaling across various physiological and pathological contexts.”

https://pubmed.ncbi.nlm.nih.gov/40586440/

https://pubs.acs.org/doi/10.1021/jacs.4c18379

Cannabinoids as Potential Therapeutic Agents in the Treatment of Pancreatic Cancer

pubmed logo

“Pancreatic cancer is one of the most aggressive and lethal malignancies, with limited therapeutic options and low survival rates, primarily due to late-stage diagnosis and resistance to conventional therapies. Recently, cannabinoids have gained attention for their analgesic and antiemetic properties in cancer symptom management, as well as for their potential anticancer effects. This review explores the mechanisms by which cannabinoids may impact pancreatic cancer progression, focusing on their molecular interactions and therapeutic potential.”

https://pubmed.ncbi.nlm.nih.gov/40578954/

“Preclinical studies revealed that cannabinoids, primarily Δ9- tetrahydrocannabinol (THC) and cannabidiol (CBD), exert anti-tumor effects through mechanisms such as apoptosis induction, cell cycle arrest, inhibition of angiogenesis, immune modulation, and reduction of oxidative stress.”

“THC, the principal psychoactive cannabinoid, and CBD, a non-psychoactive counterpart, have both demonstrated pro-apoptotic properties in pancreatic cancer cells by inducing apoptosis”

“Studies have shown that THC and CBD can induce cell cycle arrest at the G0/G1 phase, limiting cancer cell division and tumor growth.”

“Taken together, these studies suggest that cannabinoids play anticancer roles in pancreatic cancer, and should be further studied for use as therapeutic agents in the treatment of pancreatic cancer.”

https://ar.iiarjournals.org/content/45/7/2719

Persistent cannabis use and ocular health in midlife

pubmed logo

“Introduction: Cannabis is widely used and becoming legal in many countries. While some acute ocular effects of cannabis are well-known (e.g., reduced intraocular pressure, vasodilation), little is known about the consequences of long-term cannabis use for ocular health. The aim of this study was to examine the association between persistent cannabis use across adulthood and measures of ocular health in midlife.

Methods: Participants were members of the Dunedin Study (n=1037), a longitudinal cohort followed since birth. Cannabis use has been measured by self-report at every assessment from age 18 to 45. Ocular health data were collected as part of a larger assessment at age 45 (2017-2019). Statistical analysis was performed in 2022.

Results: Cannabis use and ocular health data were obtained from 887 Study members. Generalised estimating equation analysis showed higher cannabis use was associated with poorer visual acuity, wider retinal arterioles and venules, and a thicker inferior hemifield of the ganglion cell-inner plexiform layer (GC-IPL). However, when controlling for tobacco smoking and socioeconomic status (known to be associated with these ocular health domains), the associations with visual acuity, arterioles, and venules were no longer significant. The association with GC-IPL remained significant in this adjusted model.

Conclusions: Persistent cannabis use appears to be neither harmful nor beneficial to the eye at age 45, although the thicker inferior GC-IPL hemifield in users of cannabis suggests biologically plausible neuroprotection. Further assessments as this cohort ages will illuminate the relationship between persistent cannabis use and ocular neuroprotection.”

https://pubmed.ncbi.nlm.nih.gov/40570990/

https://www.ajpmonline.org/article/S0749-3797(25)00446-5/abstract

Nanoemulsions of Cannabidiol, Δ9-Tetrahydrocannabinol, and Their Combination Similarly Exerted Anticonvulsant and Antioxidant Effects in Mice Treated with Pentyelenetetrazole

pubmed logo

“Background/Objectives: The main biologically active molecules of Cannabis sativa L. are cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). Both exert anticonvulsant effects when evaluated as single drugs, but their possible interaction as components of C. sativa extracts has been scarcely studied. For this reason, we evaluated CBD and THC, combined or not, in two seizure models in mice, using an improved vehicle formula. 

Methods: Firstly, acute seizures were induced by intraperitoneal (i.p.) pentylenetetrazole (PTZ, 80 mg/kg), and mice received CBD or THC at 1, 3, 6, and 10 mg/kg, or a CBD/THC 1:1 combination at 1.5, 3, and 6 mg/kg, per os (p.o.), one hour before PTZ administration. Secondly, mice received p.o. CBD (10 mg/kg), CBD/THC (1.5, 3, and 6 mg/kg), valproic acid (50 mg/kg), or vehicle (nanoemulsions without CBD or THC), one hour before PTZ (30 mg/kg, i.p.) every other day for 21 days. Behavioral, biochemical, and immunohistochemical analyses were performed to assess the response to PTZ, oxidative stress, and astroglial activation. 

Results: In the acute model, CBD and THC at 3-10 mg/kg, and their combinations, significantly increased latency to generalized seizures and death, and improved survival rates. In the chronic model, similarly to valproic acid, CBD 10 mg/kg and CBD/THC at 1.5 and 3 mg/kg delayed kindling acquisition, while CBD/THC 6 mg/kg had no effect. CBD and CBD/THC treatments reduced oxidative and nitrosative stress and attenuated astrogliosis, as indicated by decreased glial fibrillary acidic protein and GABA transporter 1 expression and increased inwardly rectifying potassium channel 4.1 expression in hippocampal regions. However, no cannabinoid treatment prevented the impairment in novel object recognition and Y maze tests. 

Conclusions: These findings support the potential role of cannabinoids in counteracting seizures, possibly by reducing oxidative stress and astrogliosis. The study also highlights the importance of nanoemulsions as a delivery vehicle to enhance cannabinoid effectiveness while considering the risks associated with direct cannabinoid receptor activation.”

https://pubmed.ncbi.nlm.nih.gov/40573179/

“This study underscores the potential of CBD and THC nanoemulsions in seizure models, highlighting their capacity to reduce convulsions and brain damage. These formulations significantly decreased markers of oxidative and nitrosative stress, enhancing our grasp of their antiseizure mechanisms.”

https://www.mdpi.com/1424-8247/18/6/782

Full-Spectrum Medicinal Cannabis Plant Extract 0.08% THC (NTI164) Improves Symptoms of Rett Syndrome: An Open-Label Study

pubmed logo

“Aim: The aim of this Phase I/II open-label study was to assess the safety and efficacy of NTI164, a novel full-spectrum medicinal cannabis plant extract 0.08% Δ-9-tetrahydrocannabinol (THC), in Rett syndrome (RTT).

Methods: Eleven female participants (5-16 years) with a pathogenic variant in the MECP2 gene were recruited to this study, receiving NTI164 twice daily for 12 weeks. The primary outcome measure was the Clinical Global Impression-Improvement (CGI-I) Scale, with secondary outcomes measured using the CGI-Severity (CGI-S), RTT Behaviour Questionnaire (RSBQ), RTT-Symptom Index Score (RTT-SIS), RTT-Domain-Specific Concerns-Visual-Analog Scale (RTT-DSC-VAS), Impact of Childhood Neurological Disability/Quality of Life (ICND+QoL), and RTT-Caregiver Burden Inventory (RTT-CBI). Paired-samples t-test was used to assess significance between baseline and Week 12.

Results: Improvements were seen in the total CGI-I score (p = 0.028), with improvements in communication skills (p = 0.003), mental alertness (p = 0.033), socialisation/eye contact (p = 0.0004), attentiveness (p = 0.001), and anxiety (p = 0.004). CGI-S also demonstrated better outcomes after NTI164 administration (p = 0.008). RSBQ showed improvements in total score (p = 0.0005), general mood (p = 0.0003), breathing problems (p = 0.041), repetitive face movements (p = 0.004), and fear/anxiety (p = 0.006). RTT-DSC-VAS showed positive developments in abilities to communicate choices (p = 0.041). ICND total score was improved (p = 0.003), as well as cognition (p = 0.027) and Quality of Life (p = 0.0002). Total score on the RTT-CBI was improved (p = 0.006).

Conclusion: NTI164 demonstrated safety and improved some clinical and functional outcomes in RTT. These improvements justify ongoing research into NTI164, which may be a potential adjunct therapy in RTT.”

https://pubmed.ncbi.nlm.nih.gov/40568811/

“This paper demonstrates efficacy of this novel medical cannabis compound in reducing complex symptoms of Rett syndrome and improving quality of life in these patients.”

https://onlinelibrary.wiley.com/doi/10.1111/jpc.70122

Cannabinol’s Modulation of Genes Involved in Oxidative Stress Response and Neuronal Plasticity: A Transcriptomic Analysis

pubmed logo

“Cannabis sativa is a remarkable source of bioactive compounds, with over 150 distinct phytocannabinoids identified to date. Among these, cannabinoids are gaining attention as potential therapeutic agents for neurodegenerative diseases.

Previous research showed that cannabinol (CBN), a minor cannabinoid derived from Δ9-tetrahydrocannabinol, exhibits antioxidant, anti-inflammatory, analgesic, and anti-bacterial effects.

The objective of this study was to assess the protective potential of 24 h CBN pre-treatment, applied at different concentrations (5 µM, 10 µM, 20 µM, 50 µM, and 100 µM), in differentiated neuroblastoma × spinal cord (NSC-34) cells. Transcriptomic analysis was performed using next-generation sequencing techniques.

Our results reveal that CBN had no negative impact on cell viability at the tested concentrations. Instead, it showed a significant effect on stress response and neuroplasticity-related processes. Specifically, based on the Reactome database, the biological pathways mainly perturbed by CBN pre-treatment were investigated.

This analysis highlighted a significant enrichment in the Reactome pathway’s cellular response to stress, cellular response to stimuli, and axon guidance.

Overall, our results suggest that CBN holds promise as an adjuvant agent for neurodegenerative diseases by modulating genes involved in neuronal cell survival and axon guidance.”

https://pubmed.ncbi.nlm.nih.gov/40563376/

“Aging and neurodegenerative diseases are characterized by a progressive decline in cellular functions, including genomic instability, epigenetic alterations, mitochondrial dysfunction, and chronic inflammation. Our study supports that CBN exerts pleiotropic effects by modulating key molecular pathways involved in oxidative stress response, DNA repair, and neuronal survival. These results suggest that CBN positively modulates the response to cellular damage, stimulating the antioxidant response through the Nrf2 pathway and reducing the sensitivity to programmed cell death, as demonstrated by the regulation of caspases and other genes related to neuronal survival. These effects indicate that CBN may be able to support neuronal health under conditions of chronic stress, a hallmark of neurodegenerative diseases. These findings pave the way for further research into CBN’s therapeutic potential, emphasizing the need for in vivo studies to validate its efficacy and safety profile in neurodegenerative disease models.”

https://www.mdpi.com/2076-3921/14/6/744

How to ESCAPE from Pain? An Observational Study on Improving Pain and Quality of Life with the Cannamedical® Hybrid Cannabis Extract

pubmed logo

“Introduction: Chronic pain remains a challenge, with standard therapies often providing inadequate pain relief and causing undesirable side effects. Medicinal cannabis has emerged as promising alternative. This study assessed the impact of a cannabis hybrid extract on pain intensity and quality of life in daily clinical use.

Methods: ESCAPE was an observational study and included patients aged ≥ 18 years with chronic pain in Germany. The primary objective was to evaluate the effectiveness of the Cannamedical® Hybrid Cannabis Extract THC25:CBD25 on pain during four visits (V1-V4) in clinical practice, and key secondary objectives were pain interference and quality of life. Pain intensity was measured using the Numeric Rating Scale (NRS) of the Brief Pain Inventory (BPI) questionnaire. Pain interference was evaluated with the BPI pain interference subscore, and quality of life-particularly physical and mental health-was assessed with the Short Form-12 (SF-12) questionnaire. Additionally, patient and physician satisfaction with the extract was assessed.

Results: The study included 64 patients (50% female) with chronic pain (intention-to treat population; ITT). Cannabis-naïve patients of the ITT were defined as a subgroup and analyzed separately (N = 35). Mean (± SD) NRS-assessed pain intensity decreased during the study, in both the ITT (5.46 ± 1.73 at V1 vs. 3.37 ± 2.43 at V4) and in the cannabis-naïve subgroup (5.92 ± 1.34 at V1 vs. 2.37 ± 1.69 at V4). Mean pain interference subscore decreased between V1 and V4 for the ITT (5.39 ± 1.92 vs. 3.38 ± 2.46) and the cannabis-naïve group (5.68 ± 1.46 vs. 2.54 ± 1.99). Physical and mental health improved in both groups and high satisfaction with the hybrid cannabis extract was reported by patients and physicians.

Conclusion: Treatment with the Cannamedical® Hybrid Cannabis Extract THC25:CBD25 in daily clinical practice showed positive effects on patients’ pain and quality of life.”

https://pubmed.ncbi.nlm.nih.gov/40560527/

https://link.springer.com/article/10.1007/s12325-025-03262-z

In vitro antimicrobial activity of Thai stick cannabis Hang Kra Rog Phu Phan (Cannabis sativa L.), sugar leaves extract against pathogenic bacteria

pubmed logo

“Objective: Cannabis sativa L. is aware of a rich source of bioactive substances with various structures that exhibit pharmacological activity in the central nervous system, cardiovascular, cerebrovascular, respiratory, reproductive, and gastrointestinal systems.

Materials and methods: In this study, cannabis sugar leaves were soaked in 99% ethanol, followed by evaporation. The antibacterial effect of the cannabis sugar leaf extract was then evaluated using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined using broth dilution.

Results: The results of this study indicated that the cannabis sugar leaf extract inhibited Bacillus cereusVibrio choleraeEscherichia coliStaphylococcus aureus, and Staphylococcus epidermidis when compared to tetracycline, but it did not inhibit Pseudomonas aeruginosa. The MIC and MBC of the cannabis sugar leaves extract against BcereusVcholeraeEcoliSaureus, and Sepidermidis were 0.977, 1.953, 31.25, 62.5, 125, 250, 250, 500, 250, and 500 mg/ml, respectively. The bioactive compounds in cannabis sugar leaf extract were identified using high-performance liquid chromatography.

Conclusion: The results indicated that the major bioactive compounds were Δ-9- tetrahydrocannabinol (THC) and cannabidiol (CBD). While minor bioactive compounds included gallic acid and tannic acid. These results support the benefits of cannabis sugar leaf extract, which has been used for its pharmacological properties and may be useful as an alternative antimicrobial agent in medicine.”

https://pubmed.ncbi.nlm.nih.gov/40568500/

https://www.ejmanager.com/mnstemps/39/39-1729498509.pdf?t=1750936743

The endocannabinoidomes: Pharmacological redundancy and promiscuity, and multi-kingdom variety of sources and molecular targets

pubmed logo

“The endocannabinoid system (eCB) is a complex signaling network discovered in mammals during the 1980s-1990s.

It conventionally revolves around two arachidonic acid-derived mediators, N-arachidonoyl-ethanolamine (anandamide) and 2-arachidonoyl-glycerol; their main receptors, the cannabinoid receptors of type 1 (CB1) and type 2 (CB2), and the transient receptor potential vanilloid-1 channels; and the enzymes responsible for their biosynthesis and degradation. However, drawing on these discoveries, numerous eCB-like signaling lipids beyond the classical eCBs, have been unveiled, together with their receptors and metabolic enzymes, thus forming a more complex signaling network known as the endocannabinoidome (eCBome).

This review explores the physiology, pharmacological complexity, and molecular targets of the mammalian eCBome, highlighting its versatility and redundancy in the context of global health. Emerging mediators, metabolic pathways and mechanisms, receptors, and their implications in human physiology and pathology are described, particularly concerning metabolic disorders, pain, inflammation, neurodegenerative diseases, and cancer.

The importance of other “eCBomes” in nonmammalian forms of life that constitute the external and internal environments of mammals is also discussed for the first time in this context. The overarching objective of this article is to gain insights into the potential of eCBome-based therapeutic strategies aimed at enhancing both human and environmental well-being.

SIGNIFICANCE STATEMENT: Lipid-based signaling molecules are ubiquitous in nature, yet their study remains challenging due to intricate regulatory mechanisms. Among lipid signaling pathways, the endocannabinoid (eCB) system and its extended version, the endocannabinoidome (eCBome), are particularly remarkable. Comprising hundreds of mediators, and dozens of receptors and metabolic enzymes, the eCBome regulates critical physiological processes not only in mammals but also across diverse organisms, including plants, fungi, and bacteria. This article examines the evolutionary and functional diversity of eCBomes and highlights their untapped potential as multikingdom therapeutic targets to address pressing challenges in global health.”

https://pubmed.ncbi.nlm.nih.gov/40554266/

https://pharmrev.aspetjournals.org/article/S0031-6997(25)07478-2/abstract

Graphical abstract undfig1

Δ9-Tetrahydrocannabinol and cannabidiol selectively suppress toll-like receptor (TLR) 7- and TLR8-mediated interleukin-1β production by human CD16+ monocytes by inhibiting its post-translational maturation

pubmed logo

“Monocytes are innate immune cells that release inflammatory factors upon detection of infectious and injurious stimuli. CD16+ monocytes, a subset of the total monocyte population, are associated with acute and chronic inflammation in human immunodeficiency virus-associated neurocognitive disorder and rheumatoid arthritis. Given the role monocytes play in regulating the host immune response, this investigation explored the effects of cannabinoids on the monocyte secretome for potential therapeutic applications.

Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are major cannabis-derived compounds established to have immune-modulating properties. Despite a rise in medical cannabis use, the specific mechanism by which THC and CBD modulate the inflammatory response, including by human monocytes remains poorly understood.

We hypothesized that THC and CBD suppress toll-like receptor (TLR) 7- or TLR8-induced inflammatory profiles by CD16+ and CD16 monocytes, specifically interleukin (IL) 1β maturation. Cannabinoid receptor 2 selective agonist, JWH-015, was used to deduce whether cannabinoid receptor 2 signaling alone can mimic immune-modulating properties of THC. Primary human CD16+ and CD16 monocytes were pretreated with THC, CBD, or JWH-015 and then activated through TLR7 or TLR8. Activated monocytes mainly produced IL-1β, tumor necrosis factor-⍺, and IL-6.

We show that THC and CBD, but not JWH-015, exert anti-inflammatory effects on primary human monocyte apoptosis-associated speck-like protein-incorporating inflammasome formation and subsequent caspase-1 activity, contributing to suppressed IL-1β production. In addition, mRNA expression of IL1B, CASP1, NLRP3, and PYCARD were unaffected by THC. Minimal THC effects were observed on TLR8-mediated AIM2 mRNA expression.

Collectively, results from these studies suggest THC and CBD may be useful in mitigating IL-1β-mediated acute or chronic inflammation.

SIGNIFICANCE STATEMENT: This current investigation aimed to understand the role of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in mediating virally activated CD16+ monocyte inflammatory cytokine production. Further, the results indicated that THC and CBD selectively suppress monocyte interleukin 1β production, though THC is more efficacious, through its maturation, as evidenced by suppressed caspase-1 activity and apoptosis-associated speck-like protein-incorporating inflammasome formation.

This work provides evidence to support that THC, and to an extent CBD, exert anti-inflammatory effects that could be useful in mitigating monocyte interleukin 1β-mediated chronic inflammation.”

https://pubmed.ncbi.nlm.nih.gov/40553974/

https://jpet.aspetjournals.org/article/S0022-3565(25)39828-9/abstract