Cannabinoid signaling and risk in Huntington’s disease

Frontiers announces its first partnership with a leading Chinese University  | STM Publishing News

“Dysregulated endocannabinoid (eCB) signaling and the loss of cannabinoid receptors (CB1Rs) are important phenotypes of Huntington’s disease (HD) but the precise contribution that eCB signaling has at the circuit level is unknown. Using a computational model of spiking neurons, synapses, and eCB signaling, we demonstrate that eCB signaling functions as a homeostatic control mechanism, minimizing excess glutamate. Furthermore, our model demonstrates that metabolic risk, quantified by excess glutamate, increases with cortico-striatal long-term depression (LTD) and/or increased cortico-striatal activity, and replicates a progressive loss of cannabinoid receptors on inhibitory terminals as a function of the excitatory/inhibitory ratio.”

https://pubmed.ncbi.nlm.nih.gov/36118134/

https://www.frontiersin.org/articles/10.3389/fncom.2022.903947/full

Intrapallidal injection of cannabidiol or a selective GPR55 antagonist decreases motor asymmetry and improves fine motor skills in hemiparkinsonian rats

Frontiers announces its first partnership with a leading Chinese University  | STM Publishing News

“Cannabidiol (CBD) presents antiparkinsonian properties and neuromodulatory effects, possibly due to the pleiotropic activity caused at multiple molecular targets.

Recently, the GPR55 receptor has emerged as a molecular target of CBD. Interestingly, GPR55 mRNA is expressed in the external globus pallidus (GPe) and striatum, hence, it has been suggested that its activity is linked to motor dysfunction in Parkinson’s disease (PD).

The present study aimed to evaluate the effect of the intrapallidal injection of both CBD and a selective GPR55 antagonist (CID16020046) on motor asymmetry, fine motor skills, and GAD-67 expression in hemiparkinsonian rats. The hemiparkinsonian animal model applied involved the induction of a lesion in male Wistar rats via the infusion of the neurotoxin 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle via stereotaxic surgery. After a period of twenty days, a second surgical procedure was performed to implant a guide cannula into the GPe. Seven days later, lysophosphatidylinositol (LPI), CBD, or CID16020046 were injected once a day for three consecutive days (from the 28th to the 30th day post-lesion). Amphetamine-induced turning behavior was evaluated on the 14th and 30th days post-injury. The staircase test and fine motor skills were evaluated as follows: the rats were subject to a ten-day training period prior to the 6-OHDA injury; from the 15th to the 19th days post-lesion, the motor skills alterations were evaluated under basal conditions; and, from the 28th to the 30th day post-lesion, the pharmacological effects of the drugs administered were evaluated.

The results obtained show that the administration of LPI or CBD generated lower levels of motor asymmetry in the turning behavior of hemiparkinsonian rats. It was also found that the injection of CBD or CID16020046, but not LPI, in the hemiparkinsonian rats generated significantly superior performance in the staircase test, in terms of the use of the forelimb contralateral to the 6-OHDA-induced lesion, when evaluated from the 28th to the 30th day post-lesion. Similar results were also observed for superior fine motor skills performance for pronation, grasp, and supination. Finally, the immunoreactivity levels were found to decrease for the GAD-67 enzyme in the striatum and the ipsilateral GPe of the rats injected with CBD and CID16020046, in contrast with those lesioned with 6-OHDA.

The results obtained suggest that the inhibitory effects of CBD and CID16020046 on GPR55 in the GPe could be related to GABAergic overactivation in hemiparkinsonism, thus opening new perspectives to explain, at a cellular level, the reversal of the motor impairment observed in PD models.”

https://pubmed.ncbi.nlm.nih.gov/36120297/

https://www.frontiersin.org/articles/10.3389/fphar.2022.945836/full

Effects of hemp seed alone and combined with aerobic exercise on metabolic parameters, oxidative stress, and neurotrophic factors in young sedentary men

“Hemp seed and physical activity (PA) have many benefits for the metabolic and brain health of the body. This study investigated the effects of hemp seed alone and aerobic exercise on metabolic markers, oxidative stress, and neurotrophic factors in young sedentary men. This double-blind, placebo-controlled, randomized clinical trial was conducted on 48 sedentary young men in Tabriz, Iran, from April to August. The researcher in this study randomized all participants into four groups, including (1) hemp seed, (2) hemp seed + PA, (3) PA + placebo, and (4) placebo. Hemp seed supplement was administered in two 1-g capsules daily, and aerobic PA was performed a week thrice. Levels of anthropometric indices, dietary intake, antioxidant markers, lipid profile, fasting blood sugar (FBS), insulin, homeostatic model assessment for insulin resistance (HOMA-IR), quantitative insulin-sensitivity check index (QUICKI), brain-derived neurotrophic factor (BDNF), neuropeptide Y (NPY), balance, reaction time, and sit-ups were evaluated for all participants at baseline and post-intervention. We used ANOVA and ANCOVA analysis to compare oxidative stress and neurotropic factors in all intervention groups. If the distribution of the response variable was not normal, the non-parametric equivalent of these tests was used (Wilcoxon and Kruskal-Wallis tests). We performed all statistical analyzes using SPSS software version 23, and the significance level was considered 0.05 in all the statistical tests. Aerobic PA with hemp seed consumption caused a significant difference in weight, body mass index, fat mass, high-density lipoprotein, catalase, and BDNF compared with baseline. Also, aerobic PA alone caused significant changes in body weight, fat mass, and triglyceride compared with baseline. Consumption of hemp seeds alone caused a significant increase in high-density lipoprotein levels compared with baseline. At the end of the study, fat mass, total cholesterol, low-density lipoproteins, and BDNF were significantly different between the groups. According to our results, aerobic PA combined with hemp seed consumption may improve anthropometric indices, lipid profile, and BDNF and improve health outcomes like cardiovascular comorbidities, oxidative stress, and insulin resistance. PRACTICAL APPLICATIONS: A sedentary lifestyle has numerous health-threatening consequences like cardiovascular comorbidities, oxidative stress, and insulin resistance. The importance of physical activity (PA) in improving these clinical manifestations is well-known; however, the potential benefits of herbal therapy combined with PA in reducing the side effects of a sedentary lifestyle have not been well studied. In the current research, we evaluated the benefits of hemp seed alone and combined with aerobic exercise on metabolic markers, oxidative stress, and neurotrophic factors in young sedentary men for the first time. According to our results, aerobic PA combined with hemp seed consumption improved anthropometric indices, lipid profile, and brain-derived neurotrophic factor among young sedentary men.”

https://pubmed.ncbi.nlm.nih.gov/36114824/

https://onlinelibrary.wiley.com/doi/10.1111/jfbc.14417

Hemp (Cannabis sativa subsp. sativa) Chemical Composition and the Application of Hempseeds in Food Formulations

SpringerLink

“Owing to its nutritional and medicinal value, hemp has been cultivated to provide since ancient times. This review aims to map the scientific literature concerning the main functional components and the chemical composition of hemp plant. It is generally acknowledged that each organ of the hemp plant embodies a valuable source, and among them the most pivotal part is the edible fruits hempseeds. Hempseeds are rich in easily digestible proteins, fats, polyunsaturated fatty acids, and insoluble fiber, which are of high nutritional value. Furthermore, the beneficial effects have increased researchers’ interests in hempseeds-containing foods. Developed as an indispensable ingredient, hempseed is also a significant supplement in various products, such as bakery food, drinks, snacks and culinary products. Overall, this review intends to promote the further in-depth investigation of approved hemp plants and expand the range of hempseeds adoption in the functional foods field.”

https://pubmed.ncbi.nlm.nih.gov/36112300/

https://link.springer.com/article/10.1007/s11130-022-01013-x

Poly(cannabinoid)s: Hemp-Derived Biocompatible Thermoplastic Polyesters with Inherent Antioxidant Properties

Go to ACS Applied Materials & Interfaces

“The legalization of hemp cultivation in the United States has caused the price of hemp-derived cannabinoids to decrease 10-fold within 2 years. Cannabidiol (CBD), one of many naturally occurring diols found in hemp, can be purified in high yield for low cost, making it an interesting candidate for polymer feedstock. In this study, two polyesters were synthesized from the condensation of either CBD or cannabigerol (CBG) with adipoyl chloride. Poly(CBD-Adipate) was cast into free-standing films and subjected to thermal, mechanical, and biological characterization. Poly(CBD-Adipate) films exhibited a lack of cytotoxicity toward adipose-derived stem cells while displaying an inherent antioxidant activity compared to poly(lactide) films. Additionally, this material was found to be semi-crystalline and able to be melt-processed into a plastic hemp leaf using a silicone baking mold.”

https://pubmed.ncbi.nlm.nih.gov/36112124/

https://pubs.acs.org/doi/10.1021/acsami.2c05556

Cannabidiol effect in pentylenetetrazole-induced seizures depends on PI3K

SpringerLink

“Background: The phytocannabinoid cannabidiol (CBD) has previously shown to have anticonvulsant effects in preclinical and clinical studies. Recently, CBD has been approved to treat certain types of drug-resistant epileptic syndromes. However, the underlying mechanism of action remains unclear. The phosphatidylinositol 3-kinase (PI3K) signaling pathway has been proposed to modulate seizures and might be recruited by CBD. Thus, we tested the hypothesis that the anticonvulsant effect of CBD involves PI3K in a seizure model induced by pentylenetetrazole (PTZ).

Methods: We employed pharmacological and genetic approaches to inhibit PI3K and quantified its effects on seizure duration, latency, and number.

Results: PI3K genetic ablation increased the duration and number of seizures. CBD inhibited PTZ-induced seizures in mice. Genetic deletion of PI3K or pretreatment with the selective inhibitor LY294002 prevented CBD effects.

Conclusion: Our data strengthen the hypothesis that the CBD anticonvulsant effect requires the PI3K signaling pathway.”

https://pubmed.ncbi.nlm.nih.gov/36112318/

https://link.springer.com/article/10.1007/s43440-022-00391-y

The antitumor activity of cannabis sativa and CBD in prostate cancer PC3 cells

Cancer Research

“Prostate cancer is the second most frequently occurring carcinoma in males worldwide and one of the leading causes of death in men around the world. Recent studies estimate that over 1.4 million males are diagnosed with prostate cancer on an annual basis, with approximately 375 000 succumbing to the disease annually. With current treatments continuing to show severe side effects, there is a need for new treatments. In this study we looked at the effect of cannabis sativa extract, cannabidiol and cisplatin on prostate cancer cells, PC3.

Methods: In addressing the above questions, we employed the MTT assay to measure the antiproliferative effect on PC3 cells following treatment with varying concentrations of Cannabis sativa extract, cisplatin and cannabidiol. xCELLigence was also used to confirm the IC50 activity in which cells were grown in a 16 well plate coated with gold and monitor cell. Caspase 3/7 activity was also measured using 96 well-plate following treatment. Western-blot and qRT-PCR was also used to measure the gene expression of tumor suppressor genes, p53, Bax and Bcl2. Animal studies were employed to measure the growth of PC3-mouse derived cancer to evaluate the effect of compounds in vivo.

Results: From the treatment with varying concentrations of Cannabis sativa extract, cannabidiol and cisplatin, we have observed that the three compounds induced antiproliferation of PC3 cancer cell lines through the activation of caspase 3/7 activity. We also observed induction of apoptosis in these cells following silencing of retinoblastoma binding protein 6 (RBBP6), with upregulation of p53 and bax mRNA expression, and a reduction in Bcl2 gene expression. The growth of tumors in the mouse models were reduced following treatment with cisplatin and cannabidiol.

Conclusion: We demonstrated that cannabidiol is a viable therapy to treat prostate cancer cells, in combination with silencing of RBBP6. This suggests that cannabidiol rather Cannabis sativa extract may play an important role in reducing cancer progression.”

https://aacrjournals.org/cancerres/article/82/12_Supplement/3714/701192

Cannabidiol’s Multifactorial Mechanisms Has Therapeutic Potential for Aneurysmal Subarachnoid Hemorrhage: a Review

SpringerLink

“Subarachnoid hemorrhage (SAH) is a major health burden that accounts for approximately 5% of all strokes. The most common cause of a non-traumatic SAH is the rupture of a cerebral aneurysm. The most common symptom associated with SAH is a headache, often described as “the worst headache of my life.” Delayed cerebral ischemia (DCI) is a major factor associated with patient mortality following SAH and is often associated with SAH-induced cerebral vasospasm (CV).

Cannabidiol (CBD) is emerging as a potential drug for many therapeutic purposes, including epilepsy, anxiety, and pain relief. We aim to review the potential use of CBD as a treatment option for post-SAH critically ill patients. Through a literature review, we evaluated the known pharmacology and physiological effects of CBD and correlated those with the pathophysiological outcomes associated with cerebral vasospasm following subarachnoid hemorrhage. Although overlap exists, data were formatted into three major categories: anti-inflammatory, vascular, and neuroprotective effects.

Based on the amount of information known about the actions of CBD, we hypothesize the anti-inflammatory effects are likely to be the most promising therapeutic mechanism. However, its cardiovascular effects through calcium regulation and its neuroprotective effects against cell death, excitotoxicity, and oxidative stress are all plausible mechanisms by which post-SAH critically ill patients may benefit from both early and late intervention with CBD. More research is needed to better understand if and how CBD might affect neurological and vascular functions in the brain following injury such as subarachnoid hemorrhage.”

https://pubmed.ncbi.nlm.nih.gov/36109476/

https://link.springer.com/article/10.1007/s12975-022-01080-x

Neuroprotective effects of Cannabidiol on Dopaminergic Neurodegeneration and α-synuclein Accumulation in C. elegans Models of Parkinson’s disease

NeuroToxicology

“Parkinson disease (PD) is the second most progressive neurodegenerative disorder of the central nervous system (CNS) in the elderly, causing motor impediments and cognitive dysfunctions. Dopaminergic (DA) neuron degeneration and α-synuclein (α-Syn) accumulation in substantia nigra pars compacta (SNPc) are the major contributor to this disease. At present, the disease has no effective treatment. Many recent studies focus on identifying novel therapeutics that provide benefits to stop disease advancement in PD patients.

Cannabidiol (CBD) is a cannabinoid derived from the Cannabis Sativa plant and possesses anti-depressive, anti-inflammatory, and antioxidative effects. The present study aims to evaluate the neuroprotective effect of CBD in transgenic C. elegans PD models.

We observed that CBD at 0.025mM (24.66%), 0.05mM (52.41%) and 0.1mM (71.36%) diminished DA neuron degenerations induced by 6-hydroxydopamine (6-OHDA), reduced (0.025, 27.1%), (0.05, 38.9%), (0.1, 51.3%) food-sensing behavioural disabilities in BZ555, reduced 40.6%, 56.3%, 70.2% the aggregative toxicity of α-Syn and expanded the nematodes’ lifespan up to 11.5%, 23.1%, 28.8%, dose-dependently. Moreover, CBD augmented the ubiquitin-like proteasomes 28.11%, 43.27, 61.33% and SOD-3 expressions by about 16.4%, 21.2%, 44.8% in transgenic models. Further, we observed the antioxidative role of CBD by reducing 33.2%, 41.4%, 56.7% reactive oxygen species in 6-OHDA intoxicated worms.

Together, these findings supported CBD as an anti-parkinsonian drug and may exert its effects by raising lipid depositions to enhance proteasome activity and reduce oxidative stress via the antioxidative pathway.”

https://pubmed.ncbi.nlm.nih.gov/36108815/

“CBD neuroprotective effects were assessed in pharmacological transgenic models of PD. According to our assessment, CBD promoted neuroprotection via recovery of degenerated DA neurons in 6-OHDA-exposed C. elegans and significantly reduced the α-Syn accumulations. Furthermore, CBD enhanced the lipid depositions, ubiquitin-like proteasome activities, food sensing behavior, and lifespan in the treated animals. CBD could restrain PD patients’ inflammations and decline DA neuron damage via leading.”

https://www.sciencedirect.com/science/article/abs/pii/S0161813X22001462?via%3Dihub

Chronic delta-9-tetrahydrocannabinol (THC) treatment counteracts SIV-induced modulation of proinflammatory microRNA cargo in basal ganglia-derived extracellular vesicles

Journal of Neuroinflammation logo

“Background: Early invasion of the central nervous system (CNS) by human immunodeficiency virus (HIV) (Gray et al. in Brain Pathol 6:1-15, 1996; An et al. in Ann Neurol 40:611-6172, 1996), results in neuroinflammation, potentially through extracellular vesicles (EVs) and their micro RNAs (miRNA) cargoes (Sharma et al. in FASEB J 32:5174-5185, 2018; Hu et al. in Cell Death Dis 3:e381, 2012). Although the basal ganglia (BG) is a major target and reservoir of HIV in the CNS (Chaganti et al. in Aids 33:1843-1852, 2019; Mintzopoulos et al. in Magn Reson Med 81:2896-2904, 2019), whether BG produces EVs and the effect of HIV and/or the phytocannabinoid-delta-9-tetrahydrocannabinol (THC) on BG-EVs and HIV neuropathogenesis remain unknown.

Methods: We used the simian immunodeficiency virus (SIV) model of HIV and THC treatment in rhesus macaques (Molina et al. in AIDS Res Hum Retroviruses 27:585-592, 2011) to demonstrate for the first time that BG contains EVs (BG-EVs), and that BG-EVs cargo and function are modulated by SIV and THC. We also used primary astrocytes from the brains of wild type (WT) and CX3CR1+/GFP mice to investigate the significance of BG-EVs in CNS cells.

Results: Significant changes in BG-EV-associated miRNA specific to SIV infection and THC treatment were observed. BG-EVs from SIV-infected rhesus macaques (SIV EVs) contained 11 significantly downregulated miRNAs. Remarkably, intervention with THC led to significant upregulation of 37 miRNAs in BG-EVs (SIV-THC EVs). Most of these miRNAs are predicted to regulate pathways related to inflammation/immune regulation, TLR signaling, Neurotrophin TRK receptor signaling, and cell death/response. BG-EVs activated WT and CX3CR1+/GFP astrocytes and altered the expression of CD40, TNFα, MMP-2, and MMP-2 gene products in primary mouse astrocytes in an EV and CX3CR1 dependent manners.

Conclusions: Our findings reveal a role for BG-EVs as a vehicle with potential to disseminate HIV- and THC-induced changes within the CNS.”

https://pubmed.ncbi.nlm.nih.gov/36096938/

“In summary, the findings of this study suggest that HIV/SIV infection reprograms the BG leading to the release of pathogenic EVs that may potentially promote CNS inflammation and toxicity. However, cannabinoid mediated modulation of EV cargo composition as shown in this study maybe a mechanism for the regulation of HIV/SIV-induced changes. This is significant, because exploration of the potential of THC EVs in a preclinical animal model may be logical to investigate whether the clinical advantages of THC EVs will result in beneficial outcomes. The findings of this study also pave the way for investigation into the effects of the combined administration of THC:CBD [1:1 or 1:3 ratio] on neuroinflammation and their effects on BG-EV composition and function. The implication of our findings goes beyond HIV-induced inflammation. Glia cells (microglia and astrocytes) are involved in the pathogenesis of pain. Activated/reactive astrocytes play a role in neuropathic pain, inflammatory pain, as well as bone cancer pain. Activated astrocytes are also involved in Parkinson’s disease, spinal cord injury, and traumatic brain injury. In line with their role in the pathogenesis of pain, studies are warranted to assess the effect of CNS EVs in mediating the development and maintenance of pain.”

https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-022-02586-9