Tetrahydrocannabinols: potential cannabimimetic agents for cancer therapy

“Tetrahydrocannabinols (THCs) antagonize the CB1 and CB2 cannabinoid receptors, whose signaling to the endocannabinoid system is essential for controlling cell survival and proliferation as well as psychoactive effects.

Most tumor cells express a much higher level of CB1 and CB2; THCs have been investigated as potential cancer therapeutic due to their cannabimimetic properties. To date, THCs have been prescribed as palliative medicine to cancer patients but not as an anticancer modality.

Growing evidence of preclinical research demonstrates that THCs reduce tumor progression by stimulating apoptosis and autophagy and inhibiting two significant hallmarks of cancer pathogenesis: metastasis and angiogenesis. However, the degree of their anticancer effects depends on the origin of the tumor site, the expression of cannabinoid receptors on tumor cells, and the dosages and types of THC.

This review summarizes the current state of knowledge on the molecular processes that THCs target for their anticancer effects. It also emphasizes the substantial knowledge gaps that should be of concern in future studies. We also discuss the therapeutic effects of THCs and the problems that will need to be addressed in the future. Clarifying unanswered queries is a prerequisite to translating the THCs into an effective anticancer regime.”

https://pubmed.ncbi.nlm.nih.gov/36696005/

https://link.springer.com/article/10.1007/s10555-023-10078-2

Analysis of Anti-Cancer and Anti-Inflammatory Properties of 25 High-THC Cannabis Extracts

“Cannabis sativa is one of the oldest cultivated plants. Many of the medicinal properties of cannabis are known, although very few cannabis-based formulations became prescribed drugs. Previous research demonstrated that cannabis varieties are very different in their medicinal properties, likely due to the entourage effect-the synergistic or antagonistic effect of various cannabinoids and terpenes.

In this work, we analyzed 25 cannabis extracts containing high levels of delta-9-tetrahydrocannabinol (THC). We used HCC1806 squamous cell carcinoma and demonstrated various degrees of efficiency of the tested extracts, from 66% to 92% of growth inhibition of cancer cells.

Inflammation was tested by induction of inflammation with TNF-α/IFN-γ in WI38 human lung fibroblasts. The efficiency of the extracts was tested by analyzing the expression of COX2 and IL6; while some extracts aggravated inflammation by increasing the expression of COX2/IL6 by 2-fold, other extracts decreased inflammation, reducing expression of cytokines by over 5-fold.

We next analyzed the level of THC, CBD, CBG and CBN and twenty major terpenes and performed clustering and association analysis between the chemical composition of the extracts and their efficiency in inhibiting cancer growth and curbing inflammation.

A positive correlation was found between the presence of terpinene (pval = 0.002) and anti-cancer property; eucalyptol came second, with pval of 0.094. p-cymene and β-myrcene positively correlated with the inhibition of IL6 expression, while camphor correlated negatively. No significant correlation was found for COX2. We then performed a correlation analysis between cannabinoids and terpenes and found a positive correlation for the following pairs: α-pinene vs. CBD, p-cymene vs. CBGA, terpenolene vs. CBGA and isopulegol vs. CBGA.

Our work, thus, showed that most of high-THC extracts demonstrate anti-cancer activity, while only certain selected extracts showed anti-inflammatory activity. Presence of certain terpenes, such as terpinene, eucalyptol, cymene, myrcene and camphor, appear to have modulating effects on the activity of cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/36144796

“Cannabis sativa is a plant with a long history of consumption as food and medicine. Delta-9-tetrahydrocannabinol (THC) is one of the main cannabinoids in cannabis; it has many properties, including anti-cancer, anti-inflammatory, analgetic and others.”

https://www.mdpi.com/1420-3049/27/18/6057/htm

Administration of Δ9-Tetrahydrocannabinol Following Controlled Cortical Impact Restores Hippocampal-Dependent Working Memory and Locomotor Function

Hypothesis: Administration of the phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) will enhance brain repair and improve short-term spatial working memory in mice following controlled cortical impact (CCI) by upregulating granulocyte colony-stimulating factor (G-CSF) and other neurotrophic factors (brain-derived neurotrophic factor [BDNF], glial-derived neurotrophic factor [GDNF]) in hippocampus (HP), cerebral cortex, and striatum. 

Materials and Methods: C57BL/6J mice underwent CCI and were treated for 3 days with Δ9-THC 3 mg/kg intraperitoneally (i.p.). Short-term working memory was determined using the spontaneous alternations test during exploratory behavior in a Y-maze. Locomotor function was measured as latency to fall from a rotating drum (rotometry). These behaviors were recorded at baseline and 3, 7, and 14 days after CCI. Groups of mice were euthanized at 7 and 14 days. Extent of microgliosis, astrocytosis, and G-CSF, BDNF, and GDNF expression were measured at 7 and 14 days in cerebral cortex, striatum, and HP on the side of the trauma. Levels of the most abundant endocannabinoid (2-arachidonoyl-glycerol [2-AG]) was also measured at these times. 

Results: Δ9-THC-treated mice exhibited marked improvement in performance on the Y-maze indicating that treatment with the phytocannabinoid could reverse the deficit in working memory caused by the CCI. Δ9-THC-treated mice ran on the rotarod longer than vehicle-treated mice and recovered to normal rotarod performance levels at 2 weeks. Δ9-THC-treated mice, compared with vehicle-treated animals, exhibited significant upregulation of G-CSF as well as BDNF and GDNF in the cerebral cortex, striatum, and HP. Levels of 2-AG were also increased in the Δ9-THC-treated mice. 

Conclusion: Administration of the phytocannabinoid Δ9-THC promotes significant functional recovery from traumatic brain injury (TBI) in the realms of working memory and locomotor function. This beneficial effect is associated with upregulation of brain 2-AG, G-CSF, BDNF, and GDNF. The latter three neurotrophic factors have been previously shown to mediate brain self-repair following TBI and stroke.”

https://pubmed.ncbi.nlm.nih.gov/34747647

https://www.liebertpub.com/doi/10.1089/can.2021.0053

Impact of Hemp Flour on the Nutritional, Sensory and Functional Characteristics of Wheat and Whole Wheat Muffins

“The growing consumer demand for plant-based, protein- and fiber-enriched foods has encouraged the incorporation of novel functional ingredients into bakery products.

Hemp flour (HF), obtained from cold-pressed hemp seeds, represents a sustainable ingredient rich in proteins, dietary fibers, lipids, and bioactive compounds, making it suitable for nutritional fortification.

This study investigated the impact of HF addition (5-40%) on the quality of muffins prepared with wheat flour (WF) and whole wheat flour (WWF).

An initial hedonic sensory evaluation identified 5-20% HF as the most acceptable substitution range, which was then subjected to detailed physicochemical, sensory, textural, colorimetric, and microbiological analyses.

Incorporation of HF significantly increased protein (up to +44%), fiber (up to +172%), and ash (up to +76%) contents, while decreasing moisture (-39%). Both WF and WWF muffins darkened with HF incorporation, with a greater lightness reduction in WF. Texture changes (increased firmness and gumminess) were more pronounced in WF muffins. Sensory analysis revealed that WF muffins were best accepted at 10-15% HF, whereas WWF muffins maintained good acceptability up to 20% HF, indicating better integration of HF in the whole grain matrix. All samples complied with microbiological safety requirements.

Overall, the optimal substitution level was 10-15% HF in WF muffins and 20% HF in WWF muffins, demonstrating that HF can enhance the nutritional profile of muffins while maintaining acceptable technological and sensory properties in a matrix-dependent manner.”

https://pubmed.ncbi.nlm.nih.gov/41154114

“In conclusion, HF offers clear advantages as a sustainable, plant-based ingredient for functional food development. It improves the protein, fiber, and mineral content of muffins, while the type of base flour plays a decisive role in determining texture, sensory quality, and overall acceptability. Future research should focus on optimizing formulations to achieve a balance between nutritional enhancement and sensory appeal, with particular attention paid to moisture retention and improving the palatability of higher HF levels in WF-based products.”

https://www.mdpi.com/2304-8158/14/20/3578


Peptide profiling and antioxidant characterization of the simulated gastrointestinal digest of hemp seed proteins

“Hemp seeds have a long history as a foodstuff and are traditionally associated with longevity in China.

In this study, the simulated digestion of hemp seed protein (HSP) was investigated to evaluate its health benefits.

After digestion, a higher degree of hydrolysis, elevated DPPH and ABTS radical-scavenging activities, and enhanced FRAP reducing power were observed, reflecting the digestibility and antioxidant potential of HSP. Moreover, the HSP digest improved HepG2 cell viability under H2O2-induced oxidative stress.

Peptidomic analysis identified 1101 peptides (75 % < 1 kDa), among which 89 were predicted to be bioactive. From these, 27 water-soluble, non-toxic peptides were further examined. Molecular docking showed that most peptides had stronger binding affinities to ABTS, DPPH, and Keap1 than glutathione.

A 100-ns molecular dynamics simulation further confirmed the antioxidant potential of the peptides, highlighting HSP digest as a promising source of antioxidant peptides with direct radical-scavenging activity and potential Nrf2-pathway activation.”

https://pubmed.ncbi.nlm.nih.gov/41075652

“This study demonstrated that simulated gastrointestinal digestion of HSP yields a peptide-rich hydrolysate with potent antioxidant effects. The HSP digest showed significantly improved free-radical scavenging capacity and protection against oxidative stress in cells.”

https://www.sciencedirect.com/science/article/abs/pii/S030881462503910X?via%3Dihub

The association between marijuana use and oral cancer risk: a systematic review and meta-analysis of case-control studies

“The relationship between marijuana use and oral cancer risk remains controversial, with conflicting evidence from epidemiological studies. This systematic review and meta-analysis aimed to synthesize available evidence on the association between marijuana consumption and oral cancer incidence.

Following PRISMA guidelines, we conducted comprehensive searches across Scopus, PubMed, Web of Science, and Embase databases up to August 2025. We included only case-control studies reporting quantitative risk estimates for marijuana use and histologically confirmed oral cancer (ICD-10 codes C00-C06). Data extraction followed standardized protocols, and study quality was assessed using the Joanna Briggs Institute checklist. Statistical analyses were performed using Comprehensive Meta-Analysis software with random-effects models. Heterogeneity was evaluated using I2 statistics, and publication bias was assessed through funnel plots and Egger’s regression test. Six case-control studies involving 4,686 cases and 10,370 controls were included.

The pooled odds ratio demonstrated a statistically significant inverse association between marijuana use and oral cancer risk (OR = 0.659, 95% CI: 0.500-0.869, p = 0.003, I2 = 47.35).

Subgroup analyses were performed based on the duration of use, gender, and age at initiation of marijuana use; however, no clear dose-response relationship was observed. Sensitivity analyses confirmed robustness of findings, with ORs ranging from 0.599 to 0.708 across iterations. No significant publication bias was detected (Egger’s test p = 0.532). Three individual studies showed statistically significant protective effects, while three others were non-significant.

This meta-analysis suggests marijuana use is associated with reduced oral cancer risk.

However, given methodological limitations, heterogeneity in exposure assessment, and conflicting recent evidence, these findings require cautious interpretation. Future large-scale prospective cohort studies with standardized exposure measurements are essential for definitive conclusions.”


https://pubmed.ncbi.nlm.nih.gov/41236922/

https://www.tandfonline.com/doi/full/10.1080/15332640.2025.2581692

Durable complete response of advanced hepatocellular carcinoma using cannabis oil: a report of two cases

“Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide with a grim prognosis. Current treatment options for advanced HCC are limited, and a large proportion of patients is not amenable to any form of treatment, with best supportive care as the only remaining option.

Meanwhile, the use of cannabis-derived products is rising in oncological patients who are seeking symptom relief. Cannabinoids, similar to endogenous endocannabinoids, have shown promise in recent preclinical cancer research due to their ability to interact with various signaling pathways and molecular mechanisms of interest.

Case presentation

In this report, we present two patients (A aged 82 and B 77, respectively) with advanced HCC with a high tumor burden who demonstrated durable and complete regression after use of cannabis oil (A 10% delta-9-tetrahydrocannabinol (THC) and 5% cannabidiol (CBD), two droplets sublingually three times daily and B 15% THC and 2% CBD, 5 droplets sublingually two times daily) for symptom relief. The observations in this report build on previous (pre)clinical research highlighting the potential anti-tumor qualities of cannabinoids and stress the need for clinical trials investigating the anti-tumor effects of cannabinoids in cancer patients.

Conclusion

Based on the two cases presented here, we call for further research into the potential beneficial effect of cannabinoids in patients with advanced HCC.”

“The authors present two cases of durable and complete remission in two patients with advanced hepatocellular carcinoma using cannabinoids, thus stressing the call for further research into the anti-tumor effects of cannabinoids in this patient population with limited therapeutic options. These findings are hypothesis-generating and underscore the urgent need for controlled clinical trials.”

https://link.springer.com/article/10.1186/s42238-025-00353-0

https://pubmed.ncbi.nlm.nih.gov/41287047

A Preliminary Investigation of Brain Cannabinoid Receptor Type 1 (CB1R) Availability in Men with Opioid Use Disorder

pubmed logo

“The endocannabinoid (eCB) system has been proposed as a potential target for developing new medications for opioid use disorder (OUD). However, the status of the eCB system, specifically brain cannabinoid receptor type 1 (CB1R) in OUD, is unknown.

In this study, CB1R availability was measured in males with OUD on stable opioid agonist treatment (OAT) (n = 10) versus healthy controls (HC) (n = 18), using High-Resolution Research Tomography (HRRT) and the CB1R-specific radiotracer, [ 11 C]OMAR. The average volume of distribution ( V T ) across 13 regions was compared between the OUD and HC groups. Average V T was 15% lower in OUD vs. HC subjects (p = 0.04). Lower V T in OUD compared to HC was also observed in several corticolimbic areas.

Within OUD no effects on CB1R availability were observed for treatment medication (methadone vs. buprenorphine), current stress levels, or antidepressant medication. No associations between the average V T and duration of OAT treatment or time since the last illicit opioid use were observed.

This preliminary study suggests lower CB1R availability in men with OUD. Larger studies are necessary to replicate these findings. Future research should also draw from a more heterogeneous population, particularly by incorporating females, to better assess the potential confounding and moderating clinical factors. If confirmed, the observed alterations in CB1R availability in OUD may provide a rationale for targeting the eCB system in the treatment of OUD.”

https://pubmed.ncbi.nlm.nih.gov/41282260

https://www.researchsquare.com/article/rs-7715611/v1

Repolarization of inflammatory macrophages into reparative stage targeting cannabinoid receptor2: a potential perspective to dampen lung injury/ARDS

pubmed logo

“The inflammatory response during acute lung injury and ARDS leads to an overactive immune response, causing further damage and irreparable recovery. While there are drugs to target various pathogens that cause acute lung diseases, still, the consequences of infection-induced inflammatory signaling and damage prevention are limited with available drugs.

With the rise of cannabinoids as a potential therapeutic agent in several inflammatory disease states, many studies have specifically evaluated their anti-inflammatory effects via CB2 receptors and non-cannabinoid receptors, such as GPR18, in infectious lung injury. However, the exact mechanisms behind CB2 receptor agonism in the application of acute lung injury are still not clear.

Lung macrophages are major immune cells that play a major role in checking and defending the primary and secondary consequences of lung infectious injury. The exact mechanism by which macrophages differentiate to produce anti-inflammatory effects over inflammation is still widely debated during episodes of acute lung injury or respiratory distress.

Using systematic literature evaluation and analysis of current trends and gaps in the literature, we have analyzed the mechanisms that CB2 agonists involve in dampening inflammatory signaling and redirecting the response in acute lung injuries/ARDS by modifying the nature of inflammatory macrophages to anti-inflammatory.

Our systematic review indicated that within the inflammatory macrophage response, CB2 agonists impact several signaling pathways involved in the excessive immune response, reducing the expression of inflammatory transcription factors and inflammatory cytokine storm, and redirecting the macrophages to resolve the lung injury/ARDS.”

https://pubmed.ncbi.nlm.nih.gov/41282589

“Various studies suggest that monocyte/macrophage adoptive transplantation reverses inflammatory injury. However, these studies showed various signaling pathways, but the question is which signaling pathway is important among those to resolve the ALI/ARDS inflammation? Thus, the full therapeutic implications of CB2 agonists are still unknown. Determining the CB2 receptor agonist signaling pathway for reducing cytokine storm and inflammation by repolarizing inflammatory macrophages into reparative macrophages will have the greatest impact in a clinical context. Studies suggested that CB2 receptor agonists, lacking central unwanted side effects, may be promising therapeutic targets in lung inflammatory diseases by modulating the pulmonary immune system and converting inflammatory macrophages to the reparative stage.”

https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1623857/full

Cannabinoids shift the basal ganglia microRNA m6A methylation profile towards an anti-inflammatory phenotype in SIV-infected rhesus macaques

pubmed logo

“Epitranscriptomic modifications [N6-methyladenosine (m6A)] regulate various diseases, including cancer and inflammation. Despite their functional relevance in neural development and differentiation, the role of m6A modifications in HIV neuropathogenesis is unknown. Using anti-N6-methyladenosine (m6A) antibody-immunoprecipitation and microarray profiling, we identified m6A modifications in miRNAs in basal ganglia (BG) of uninfected (VEH) and SIV-infected Rhesus macaques (RMs) on combination anti-retroviral therapy (ART) and either VEH-treated (VEH/SIV/ART) or THC:CBD-treated (THC:CBD/SIV/ART).

HIV/SIV infection promoted an overall hypomethylated miRNA m6A profile. While THC:CBD did not significantly impact the overall hypomethylated m6A profile, specific miRNAs predicted to target proinflammatory genes showed marked m6A hypomethylation compared to VEH-treated RMs. Additionally, specific BG m6A-modified miRNAs were detected in BG-derived extracellular vesicles. Mechanistically, the DRACH motif in the miR-194-5p seed region was significantly m6A hypomethylated in THC:CBD/SIV/ART RMs. Unlike wild-type, in-vitro transfected m6A-modified miR-194-5p mimics failed to downregulate STAT1 protein expression. Further, compared to VEH/SIV/ART RMs, THC:CBD significantly reduced m6A methylation of 44 miRNAs directly involved in regulating CNS network genes.

Our findings indicate that m6A epi-transcriptomic marks in the seed nucleotides can impair miRNA function and that cannabinoids may preserve it by reducing m6A methylation levels, thus providing a mechanistic explanation underlying their anti-neuroinflammatory effects in HIV/SIV infection.”

https://pubmed.ncbi.nlm.nih.gov/41286161

https://www.nature.com/articles/s42003-025-09049-w