Cannabidiol and Beta-Caryophyllene: chronic inflammatory pain

pubmed logo

“While chronic pain is challenging to manage, it always co-exists with depression. Currently, chronic pain and depression are usually treated separately with distinct approaches, yet effectiveness remains elusive. Consequently, the development of integrated therapeutic strategies for pain while addressing depression is a high public health priority and unmet need that affects millions of people.

This study aims to determine if the combination of the two phytocannabinoids Beta-Caryophyllene (BCP) and cannabidiol (CBD) is effective for chronic pain while simultaneously showing antidepressant effects.

We used a chronic inflammatory pain model (Complete Freund’s Adjuvant, CFA) and a battery of pain and depression-like behavior tests in mice. Proteomics and immunohistochemistry (IHC) were used to explore the potential mechanisms of the effect of the combination on pain and depression.

We found that mice treated with the CBD and BPC combination produced a synergistic pain-relieving effect in the chronic inflammatory pain model and exhibited antidepressant properties.

Our IHC data also show that the CBD and BCP combination significantly reduced the neuroinflammation produced by CFA, and the proteomics showed downregulation of selected proteins involved in inflammation by the combination, compared to the individual effects of CBD and BCP.

In conclusion, our current findings show that, in the CFA pain model, the combination of CBD and BCP produces a synergistic pain-relief effect while also having antidepressant properties. Additionally, our data show that the anti-inflammatory action of this combination may explain its beneficial effects on pain and depression. Therefore, our data suggest this combination as a potentially effective treatment for chronic pain and related depression.”

https://pubmed.ncbi.nlm.nih.gov/41120021/

“In conclusion, our current findings show that, in the CFA pain model, the combination of CBD and BCP produces a synergistic analgesic effect while also having antidepressant properties. Additionally, our data show that the anti-inflammatory action of this combination may explain its beneficial effects on pain and depression. Therefore, our data suggest this combination as a potentially effective treatment for the co-occurrence of chronic pain and depression.”

https://www.sciencedirect.com/science/article/pii/S1043661825004128?via%3Dihub

Full Spectrum Cannabis Oil for the treatment of chronic pain and sleep dysfunction in myofascial temporomandibular disorder: a case report

pubmed logo

“Medicinal cannabis has been the subject of extensive research, with recent studies demonstrating its potential in managing chronic pain and enhancing quality of life.

This case report examines the use of medicinal cannabis in a patient treated at the School of Dentistry of Araçatuba (FOA-UNESP). The patient, a 28-year-old female with no comorbidities, presented with chronic muscular TMD and reported poor sleep quality. Full-spectrum cannabis oil (1:1 ratio of THC to CBD), was prescribed for a period of 60 days, with a maximum dosage of 10 drops per day. Pain intensity was measured using the Visual Analog Scale (VAS), while sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI). Evaluations were conducted at three intervals: baseline, day 30, and day 60. To ensure patient safety, pre- and post-treatment blood tests were performed, and dosage adjustments were made every three days under the supervision of the study’s medical team.

The results revealed significant improvements in pain management, with the patient’s orofacial pain score decreasing from 7 to 3 on the NRS. Additionally, sleep quality improved, as reflected by a lower PSQI score (global sleep quality at level 6 at the end), indicating more restorative sleep. Throughout the treatment period, the patient experienced mild side effects, including drowsiness and gastrointestinal discomfort, which were effectively managed through dosage modifications.

In conclusion, full-spectrum cannabis oil shows promise as a therapeutic strategy for managing orofacial pain and improving sleep quality, providing significant relief in conditions where other interventions are ineffective or poorly tolerated. Further research is warranted to better understand the therapeutic mechanisms and potential side effects of medicinal cannabis in the management of chronic pain and related conditions.”

https://pubmed.ncbi.nlm.nih.gov/41092177/

“In conclusion, the use of Full Spectrum Cannabis Oil in this case was associated with a clinically meaningful reduction in chronic orofacial pain and improvement in sleep quality, with no adverse effects or laboratory abnormalities observed during the treatment period. These outcomes suggest that individualized cannabinoid-based therapy may be a safe and effective approach for selected patients with temporomandibular disorders and comorbid sleep disturbances.”

https://www.scielo.br/j/bjb/a/bK69ZBYPSB4dJ9yqcFxSzcf/?lang=en

VER-01 Shows Enhanced Gastrointestinal Tolerability, Superior Pain Relief, and Improved Sleep Quality Compared to Opioids in Treating Chronic Low Back Pain: A Randomized Phase 3 Clinical Trial

pubmed logo

“Introduction: Chronic low back pain (CLBP) affects over half a billion people worldwide. Current pharmacologic treatments, comprising mainly non-steroidal anti-inflammatory drugs and opioids, offer limited efficacy and pose significant risks, warranting the development of tolerable, safe and effective alternatives.

Methods: This randomized controlled trial on adults with CLBP was designed to confirm the superior efficacy and gastrointestinal tolerability of VER-01, a novel, standardized full-spectrum extract from Cannabis sativa DKJ127 L., over opioids. Subjects were randomized (1:1) to receive VER-01 or a range of commercially available opioids. After a 3-week titration, subjects underwent 24 weeks of treatment, followed by 2 weeks of wash-out. The primary endpoint was the relative risk of constipation occurrence after 27 weeks treatment. Secondary endpoints included changes in pain and sleep scores, determined using an 11-point numeric rating scale (NRS), with key secondary endpoints defined for week 27.

Results: A total of 384 individuals were randomized to receive VER-01 (n = 192) or opioids (n = 192). Subjects receiving VER-01 were fourfold less likely to develop constipation than those receiving opioids (relative risk [RR] VER-01/opioids 0.25; 95% confidence interval [CI] 0.09-0.69; p = 0.007) and threefold less likely to use laxatives (RR 0.34; 95% CI 0.18-0.65; p < 0.001). Longitudinal analysis revealed that VER-01 was superior to opioids in terms of pain reduction over 6 months of treatment, although differences in secondary endpoints limited to week 27 alone were not significant. Throughout the 6 months of treatment, mean pain reduction was 2.50 NRS points with VER-01 versus 2.16 with opioids (mean difference [MD] 0.34; 95% CI 0.00-0.67; p = 0.048), and sleep improved by 2.52 points with VER-01 versus 2.07 with opioids (MD 0.45; 95% CI 0.11-0.79; p = 0.009). These benefits were particularly pronounced in participants with severe pain, with greater pain reduction (MD 0.58; 95% CI 0.01-1.15) and sleep improvement (MD 0.66, 95% CI 0.05-1.27) compared to opioids.

Conclusions: VER-01 demonstrated superiority over opioids in treating CLBP, both in terms of efficacy and gastrointestinal tolerability.”

https://pubmed.ncbi.nlm.nih.gov/41028525/

“In summary, this study provides robust evidence that VER-01 offers better tolerability, as well as superior pain relief and sleep quality compared to opioids in patients with CLBP. These findings highlight its potential as a promising new pharmacological option within a multimodal treatment approach that could fundamentally shift the paradigm in the treatment of chronic pain.”

https://link.springer.com/article/10.1007/s40122-025-00773-z

Cannabidiol engages the peripheral endogenous opioid system to produce analgesia in neuropathic mice

pubmed logo

“Cannabidiol (CBD) has been getting attention from the scientific community regarding its potential for the treatment of different conditions, such as epilepsy, anxiety, and pain.

This potential can be useful in clinical practice as an alternative or as an adjuvant alongside conventional therapeutic approaches; however, its mechanisms of action should be best described for its more effective application. Thus, our study aimed to evaluate whether the peripheral opioid system is involved in the analgesic mechanism of cannabidiol administered systemically for the treatment of neuropathic pain.

Male Swiss mice were subjected to the sciatic constriction injury, and their nociceptive threshold was evaluated using the mechanical paw pressure test.

Cannabidiol 20 mg/Kg produced an antinociceptive effect. Bestatin (400 µg/paw), a selective aminopeptidase-N inhibitor, potentiates the intermediate analgesic response of CBD at the dose of 2 mg/Kg. Naloxone (50 µg/paw), a non-selective opioid receptor antagonist, reversed the CBD-mediated analgesia. CTOP (5, 10, and 20 µg/paw) and naltrindole (30, 60, and 120 µg/paw), μ and Δ opioid receptor antagonists, but not norBNI (200 µg/paw), a κ opioid receptor antagonist, partially reversed the CBD analgesia.

Thus, our study shows that cannabidiol may induce activation of opioid receptors in the periphery as a part of its analgesic mechanism in neuropathic pain.”

https://pubmed.ncbi.nlm.nih.gov/41022278/

“CDB induces the activation of µ and δ opioid receptors as a part of its analgesia mechanism, leading us to suggest a possible interaction between opioid and cannabinoid systems as a complementary mechanism for generating peripheral analgesia in neuropathic mice treated with cannabidiol.”

https://www.sciencedirect.com/science/article/abs/pii/S0304394025002824?via%3Dihub

Full-spectrum extract from Cannabis sativa DKJ127 for chronic low back pain: a phase 3 randomized placebo-controlled trial

pubmed logo

“Chronic low back pain (CLBP) affects over half a billion people worldwide. Current pharmacologic treatments offer limited efficacy and carry substantial risks, warranting the development of safe and effective alternatives.

This multicenter, randomized, placebo-controlled phase 3 trial evaluated the efficacy and safety of VER-01 in CLBP. It enrolled 820 adults with CLBP (VER-01, n = 394; placebo, n = 426) and included a double-blind 12-week treatment phase (phase A), a 6-month open-label extension (phase B), followed by either a 6-month continuation (phase C) or randomized withdrawal (phase D). The primary endpoint of phase A was a change in mean numeric rating scale (NRS) pain intensity, with a change in total neuropathic pain symptom inventory (NPSI) score as a key secondary endpoint in participants with a neuropathic pain component (PainDETECT > 18). The primary endpoint for phase D was time to treatment failure.

The study met its primary endpoint in phase A, with a mean pain reduction of -1.9 NRS points in the VER-01 group (mean difference (MD) versus placebo = -0.6, 95% confidence interval (CI) = -0.9 to -0.3; P < 0.001). Pain further decreased to -2.9 NRS points in phase B, with effects sustained through phase C.

The study also met its key secondary endpoint of phase A, with a mean NPSI decrease of -14.4 (standard error, 3.3) points from baseline in the VER-01 arm (MD versus placebo = -7.3, 95% CI = -13.2 to -1.3; P = 0.017). Although phase D did not meet its primary endpoint (hazard ratio = 0.75, 95% CI = 0.44-1.27; P = 0.288), pain increased significantly more with placebo upon withdrawal (MD = 0.5, 95% CI = 0.0-1.0; P = 0.034). In phase A, the incidence of adverse events-mostly mild to moderate and transient-was higher with VER-01 than with placebo (83.3% versus 67.3%; P < 0.001). VER-01 was well-tolerated, with no signs of dependence or withdrawal.

VER-01 shows potential as a new, safe and effective treatment for CLBP.”

https://pubmed.ncbi.nlm.nih.gov/41023483/

“In conclusion, this phase 3 study provides robust evidence supporting the efficacy and safety of VER-01 in the treatment of CLBP.”

https://www.nature.com/articles/s41591-025-03977-0

Cannabis sativa Root Extract Exerts Anti-Nociceptive and Anti-Inflammatory Effects via Endocannabinoid Pathway Modulation In Vivo and In Vitro

pubmed logo

“Cannabis sativa root has traditionally been used to relieve pain and inflammation, but its pharmacological properties remain underexplored due to low levels of psychoactive cannabinoids.

This study aimed to investigate the anti-inflammatory and antinociceptive effects of the ethyl acetate fraction of Cannabis sativa root (CSREA) using in vivo rodent pain models. Mice were subjected to formalin and acetic acid-induced nociceptive tests, while rats were evaluated using a carrageenan-induced paw edema model.

CSREA significantly reduced pain-related behaviors in both early (0-10 min) and late phases (15-30 min) of the formalin test and decreased writhing responses in the acetic acid model. Notably, CSREA also improved survival rates following acetic acid injection. Inflammatory markers, including IL-6 and IL-1β, were significantly lowered in serum.

Furthermore, CSREA suppressed paw edema and redness in the carrageenan-induced rat model, demonstrating dose-dependent anti-inflammatory efficacy comparable to diclofenac. CSREA also downregulated pain-related gene expression (SCN9AASIC1ATACR1) and regulated key enzymes involved in endocannabinoid metabolism (FAAHMAGLDAGL), suggesting its role in the molecular modulation of pain pathways.

These effects are likely mediated via modulation of the endocannabinoid system, particularly by rebalancing the CB1R/CB2R ratio. The findings suggest that CSREA holds promise as a natural therapeutic agent for managing pain and inflammation and warrants further investigation into its molecular mechanisms and long-term effects.”

https://pubmed.ncbi.nlm.nih.gov/41009431/

“This study provides evidence for the in vivo analgesic and anti-inflammatory effects and underlying mechanism of CSREA in vitro. Our results from the formalin and writhing tests demonstrate that CSREA significantly reduced nociceptive pain-related behaviors and inflammatory cytokine levels indicating strong anti-nociceptive properties in a dose-dependent manner. In addition, CSREA markedly reduced paw edema in the carrageenan-induced rat model, suggesting its potential as a natural product with anti-inflammatory activity. These effects are likely mediated through modulation of the endocannabinoid system, particularly by altering cannabinoid levels as demonstrated in the in vitro model.”

https://www.mdpi.com/1422-0067/26/18/8863

Analgesic and toxicological evaluation of cannabidiol-rich Moroccan Cannabis sativa L. (Khardala variety) extract: Evidence from an in vivo and in silico study

pubmed logo

“The legalization of cannabis for industrial and medicinal purposes has significantly expanded worldwide.

This study delves into the analgesic potential toxicity study of chloroformic extract from the Moroccan Cannabis sativa L. (C. sativa) cultivar, Khardala (KH extract). Our findings reveal that the lethal dose of KH extract is ≥5,000 mg/kg, with mice given 2,000 mg/kg exhibiting neurotoxic symptoms, including piloerection, aggressiveness, and fear, along with marked hepato-renal toxicity indicated by elevated levels of alanine aminotransferase, aspartate aminotransferase, total bilirubin, and creatinine in both male and female subjects.

Importantly, no toxicity was observed at 250 mg/kg and 500 mg/kg doses. Remarkably, at a dose of 500 mg/kg, the KH extract demonstrated a potent analgesic effect superior to cannabidiol (CBD), suggesting a synergistic interaction among the extract’s bioactive compounds, such as CBD, cannabidivarin (CBDV), Delta 9 tetrahydrocannabinol (THC), cannabigerol (CBG), Delta 9 tetrahydrocannabivarin (THCV), and β-caryophyllene. 

In silico analysis supports these findings, showing the strong binding potential of THC, THCV, CBG, and CBDV to delta opioid receptors, with G-scores >-5.0 kcal/mol, highlighting the promising analgesic efficacy of this cannabis cultivar extract.

This study underscores the therapeutic potential of the KH cultivar, positioning it as a promising candidate for pain management therapies.”

https://pubmed.ncbi.nlm.nih.gov/40917785/

“In summary, this study contributes to the growing body of research on C. sativa, highlighting the potential therapeutic applications of KH extract in pain management.”

https://www.degruyterbrill.com/document/doi/10.1515/biol-2025-1141/html

UK Medical Cannabis Registry: A Clinical Outcomes Analysis for Complex Regional Pain Syndrome

pubmed logo

“Background: Complex regional pain syndrome is characterized by severe, persistent pain. Emerging evidence suggests that cannabis-based medicinal products may represent a new therapeutic option. However, to date, no clinical studies have evaluated the effects of cannabis-based medicinal products in individuals with complex regional pain syndrome. The aim of this study is to assess changes in patient-reported outcome measures and the prevalence of adverse events associated with cannabis-based medicinal products prescribed for complex regional pain syndrome.

Methods: This case series assessed changes in patient-reported outcome measures over 6 months in complex regional pain syndrome patients enrolled in the UK Medical Cannabis Registry. Adverse events were measured and graded using the Common Terminology Criteria for Adverse Events version 4.0.

Results: A total of 64 patients were identified for inclusion. At baseline, pain severity measured by the Brief Pain Inventory Short Form was 6.69 ± 1.42. This improved at 1 (5.85 ± 1.73), 3 (5.91 ± 1.82), and 6 months (6.05 ± 1.72; p < 0.050). Participants also reported improvements in severity as measured by the Short Form-McGill Pain Questionnaire-2 and pain visual analogue scale at the same time points (p < 0.050). Participants also reported improvements in anxiety symptoms, sleep quality, and general health-related quality of life (p < 0.050), as measured by validated measures. Five patients (7.81%) reported 50 (78.13%) adverse events.

Discussion: This study represents the outcomes in individuals with complex regional pain syndrome prescribed cannabis-based medicinal products. These suggest initiation of cannabis-based medicinal products is associated with improvements in patient-reported outcome measures. While these findings are consistent with the literature, they must be interpreted with caution, considering the limitations of this study.

Conclusion: Cannabis-based medicinal products were associated with improvements in pain severity and interference. Participants also reported improvements in important metrics of health-related quality of life. This supports further research through high-quality randomized controlled trials to ascertain the efficacy of cannabis-based medicinal products in improving complex regional pain syndrome symptoms.”

https://pubmed.ncbi.nlm.nih.gov/40898690/

“In conclusion, the results imply that initiation of CBMPs was associated with improved pain relief and health-related quality of life in complex regional pain syndrome patients.”

https://onlinelibrary.wiley.com/doi/10.1002/brb3.70823

Delta-9-tetrahydrocannabinol and Cannabidiol for Pain: Preclinical and Clinical Models

pubmed logo

“Cannabinoids are increasingly being used to manage pain resulting from a variety of conditions.

Both preclinical animal models and human studies have played a crucial role in advancing our knowledge of cannabinoids, their involvement in pain mechanisms, and their potential utility as novel analgesics.

This chapter first reviews basic pain neurobiology and the most common experimental pain paradigms, which provide a basis for our discussion of preclinical, human laboratory, and clinical research characterizing the effectiveness of cannabinoids for managing pain.

While a substantial body of literature exists describing these effects, findings are complex and largely mixed, dependent on the cannabinoid administered, route of administration, and pain modality/syndrome tested. Herein, we highlight the need for more rigorous, placebo-controlled research defining the therapeutic efficacy of cannabinoids.

The chapter concludes by emphasizing the need for further investigation of other cannabis constituents (e.g., minor cannabinoids and terpenes), potential interactions between cannabinoids and other analgesic medications, as well as other emerging issues in the intersection between cannabinoids and pain management.”

https://pubmed.ncbi.nlm.nih.gov/40877567/

https://link.springer.com/chapter/10.1007/7854_2025_604

Opioid reduction in patients with chronic non-cancer pain undergoing treatment with medicinal cannabis

pubmed logo

“Introduction: Opioid sparing by co-prescription of cannabinoids may enable patients to reduce their opioid consumption prescribed for chronic benign pain.

Methods: One cohort attending a small private pain clinic (N = 102), already taking opioids, was co-prescribed cannabinoids and another cohort (N = 53) attending a separate pain clinic nearby received only opioids. The two groups were studied prospectively for a year before their drug consumption was assessed.

Results: At baseline, median opioid consumption was 40 mg/day in both cohorts. Medicinal cannabis was administered daily in an oil formulation usually starting at 2.5 mg/day and was titrated to maximize benefits. At 12 months, the median dose contained 15 mg delta-9-tetrahydrocannabinol and 15 mg cannabidiol. At one-year follow-up, 46 of 102 cases had dropped out compared with only one of 53 controls. Opioid consumption had decreased significantly at one-year follow-up, the final median dose being lower in cases (2.7 mg/day) than controls (42.3 mg/day) (p < 0.05 in an intention-to-treat analysis). Disability and insomnia had also decreased in cases.

Conclusion: The introduction of cannabinoids can produce useful reductions in opioid consumption in real-world settings, with additional benefits for disability and insomnia. However, this treatment is tolerated by only a subgroup of patients.”

https://pubmed.ncbi.nlm.nih.gov/40788193/

“Plain language summary

Morphine-like drugs (opioids) decrease pain but can cause severe breathing problems and death if these drugs are consumed in excessive amounts. Stopping these drugs suddenly (going “cold turkey”) can cause severe adverse effects and, as time goes on, increasing amounts may be required to reduce pain. It might be possible to reduce opioid consumption by also taking medicinal cannabis; otherwise, reduction can be difficult to achieve. Cannabis treatment is safe when the hallucinatory component of cannabis is kept to low levels, causing minimal euphoric effects (a “stoned” sensation).In this study, two groups of patients with chronic pain were studied. Both were taking opioid drugs, but one group also took medicinal cannabis. About half of the medicinal cannabis group were not able to keep taking it due to unpleasant side effects. In the remainder, opioid consumption decreased significantly after both 6 and 12 months. Physical activity and sleep also improved. These findings indicate that medicinal cannabis can help patients to reduce their opioid consumption and improve their physical activity and sleep.”

“These findings indicate that medicinal cannabis can help patients to reduce their opioid consumption and improve their physical activity and sleep.”

https://www.tandfonline.com/doi/full/10.1080/17581869.2025.2544511