Anti-Inflammatory Effects of Cannabinoids in Therapy of Neurodegenerative Disorders and Inflammatory Diseases of the CNS

pubmed logo

“Many neurodegenerative diseases are associated with immune system disorders, while neurodegenerative processes often occur in inflammatory conditions of the Central Nervous System (CNS).

Cannabinoids exhibit significant therapeutic potential due to their dual ability to modulate both neural and immune functions. These compounds have a broad spectrum of action, allowing them to target multiple pathological mechanisms underlying neurodegenerative and inflammatory CNS diseases.

The present review outlines the therapeutic potential of cannabinoids, with a focus on their anti-inflammatory properties, in the treatment of neurodegenerative conditions, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and Huntington’s disease, as well as inflammatory CNS disorders like multiple sclerosis and HIV-associated dementia.”

https://pubmed.ncbi.nlm.nih.gov/40724820/

“Cannabinoids, the active compounds derived from Cannabis sativa, are attracting increasing interest for their therapeutic potential in neurodegenerative disorders (Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease) and inflammatory CNS conditions (multiple sclerosis and HIV-associated dementia).

Their multimodal mechanisms of action include the following: (1) modulating pathological protein aggregation and mitochondrial dysfunction, and (2) exerting neuroprotective and anti-inflammatory effects which are mediated through microglial regulation.

The neurodegenerative diseases and inflammatory CNS disorders discussed in this work represent a serious challenge for healthcare systems due to their complex etiology or pathophysiology, severe symptoms, and the limited effectiveness of existing treatments. Consequently, improving therapeutic strategies for these disorders remains a priority.

Many studies suggest that pharmacological modulation of the endocannabinoid system could influence neurodegenerative processes, providing a basis for further research into cannabinoid-based therapies. In particular, the inhibition of FAAH in the endocannabinoid system has emerged as a potential therapeutic approach to control neuroinflammatory processes.”

https://www.mdpi.com/1422-0067/26/14/6570

Cannabidiol Extracted from Cannabis sativa L. Plant Shows Neuroprotective Impacts Against 6-HODA-Induced Neurotoxicity via Nrf2 Signal Transduction Pathway

pubmed logo

“Background: As a prevalent neurodegenerative illness, Parkinson’s disease (PD) is associated with serious disability and reduced quality of patients’ lives. Therefore, finding new adjuvant treatment approaches that can improve patients’ quality of life is crucial.

Objectives: This study evaluated the impacts of cannabidiol (CBD) on the PC12 cell line and elucidated its mechanism of action, emphasizing the antioxidant pathway.

Methods: First, CBD was extracted from the hemp plant. Then, the cells were treated with CBD at different dosages. After treatment, the cells were exposed to 6-HODA, and cell viability and apoptosis, reactive oxygen species (ROS) content, total antioxidant capacity, lipid peroxidation, super oxide dismutase (SOD) and GSH levels, as well as the Nrf2BaxBcl-2, and Casp3 genes’ expressions were measured.

Results: Cannabidiol augmented the cell viability and decreased the apoptosis rates of 6-HODA-exposed PC12 cells. Also, pretreatment of PC12 cells with CBD was associated with decreases in ROS and malondialdehyde (MDA) contents, and an improvement in total antioxidant capacity and SOD and GSH activities were also seen. In addition, CBD overexpressed Nrf2 and Bcl-2 genes in 6-HODA-exposed PC12 cells and, on the other hand, prevented the upregulation of Bax and Casp3.

Conclusions: Overall, it was concluded that CBD has neuroprotective impacts against 6-HODA-induced neurotoxicity via the Nrf2 signal transduction pathway.”

https://pubmed.ncbi.nlm.nih.gov/40718446/

“In general, it was concluded that CBD has neuroprotective impacts against 6-OHDA-induced neurotoxicity due to its antioxidant properties that mediate via the Nrf2 signaling pathway.”

https://brieflands.com/articles/ijpr-160499

Cannabidiol improves L-DOPA-induced dyskinesia and modulates neuroinflammation and the endocannabinoid, endovanilloid and nitrergic systems

pubmed logo

“Despite the widespread use of L-3,4-dihydroxyphenylalanine (L-DOPA) as the gold standard for dopamine (DA) replacement in Parkinson’s Disease (PD), its prolonged administration frequently leads to L-DOPA-induced dyskinesia (LID), a significant therapeutic challenge.

Modulating the endocannabinoid system has emerged as a promising approach for managing LID.

This study explored whether cannabidiol (CBD), a non-psychoactive compound of Cannabis sativa, and PECS-101, a fluorinated derivative of CBD, could mitigate the onset and progression of LID.

We used unilateral 6-hydroxydopamine-lesioned rats, treated with L-DOPA (10 mg kg – 1) for three weeks to induce severe abnormal involuntary movements (AIMs). Treatments were administered during the final two weeks. CBD (30 mg kg – 1) and PECS-101 (3 and 30 mg kg – 1) significantly reduced AIMs without impairing the motor benefits of L-DOPA.

The antidyskinetic effects of CBD were associated with decreased striatal Fos-B and phospho-ERK expression and were independent of lesion severity. CBD effects were prevented by antagonists of CB1 (1 mg kg – 1) and PPARγ (4 mg kg – 1) receptors. Co-administration of TRPV-1 antagonist capsazepine (5 mg kg – 1) enhanced the antidyskinetic effects of CBD. Combining the capsazepine with the neuronal nitric oxide synthase inhibitor, 7-nitroimidazole (10 mg kg – 1) enhanced these effects. CBD did not alter striatal DA levels but significantly increased the concentrations of anandamide and 2-arachidonoylglycerol in dyskinetic animals.

The antidyskinetic effects of CBD were associated with a reduction of the enhanced striatal glia and peripheral inflammation markers. These findings suggest that CBD alleviates LID by interacting with the nitrergic neurotransmission and TRPV-1, CB1, and PPARγ receptors.”

https://pubmed.ncbi.nlm.nih.gov/40684872/

“Cannabidiol (CBD), the primary non-psychotomimetic compound in Cannabis sativa, has shown promise in PD and LID treatment (Junior et al., 2020; Fernández-Ruiz et al., 2013). Its pharmacological profile includes neuroprotective, anti-inflammatory, and antioxidant properties, as well as interaction (either directly or indirectly) with several receptors associated with LID (Ibeas Bih et al., 2015; Devinsky et al., 2014). CBD also protects neurons from toxic insults by modulating glutamatergic and dopaminergic signaling (Fogaça et al., 2012; Kim et al., 2006).”

https://www.sciencedirect.com/science/article/abs/pii/S0278584625002106?via%3Dihub

Recent Preclinical Evidence on Phytocannabinoids in Neurodegenerative Disorders: A Focus on Parkinson’s and Alzheimer’s Disease

pubmed logo

“The endocannabinoid system (ECS) is a vital biological network essential for maintaining homeostasis and supporting various physiological functions. It comprises cannabinoid receptors, endogenous lipid-based ligands, known as endocannabinoids, as well as metabolic enzymes and associated proteins responsible for regulating their levels within tissues. The ECS plays a central role in modulating processes involving the central nervous system (CNS). Recent studies have highlighted its antioxidant, anti-inflammatory, and neuroprotective properties.

The therapeutic potential of cannabinoids, particularly phytocannabinoids derived from plants, has attracted significant attention in medical and pharmaceutical research. This interest has grown in parallel with the increasing availability of cannabinoid-based food supplements on the pharmaceutical market. Given the complexity of the ECS and its broad range of interactions, the discovery of this system has spurred extensive investigations into the use of cannabinoids for various health conditions.

In this review, we examine recent preclinical evidence supporting the use of phytocannabinoids in the context of neurodegenerative diseases, particularly in Alzheimer’s disease and Parkinson’s disease. Targeting the ECS through phytocannabinoid-based pharmacological modulation offers a promising therapeutic strategy for these neurological disorders. Among these compounds, cannabidiol has emerged as a key focus of research due to its multifaceted effects and favorable safety profile. Nonetheless, continued investigation is necessary to clarify its mechanisms of action, and to develop effective, evidence-based clinical applications.”

https://pubmed.ncbi.nlm.nih.gov/40573285/

“Recent advances in cannabinoid research have shed light on the considerable therapeutic potential of phytocannabinoids, particularly CBD, in the treatment of neurodegenerative diseases.

The preclinical studies presented in this review demonstrate consistent neuroprotective, anti-inflammatory, antioxidant, and neuromodulator effects in models of AD, PD, or HD.

These effects are largely mediated through the complex interplay of phytocannabinoids with the ECS, as well as their interactions with non-cannabinoid targets, such as TRPV1, 5-HT1A receptors, and PPARs.The ECS emerges as a crucial modulator of CNS homeostasis, and its dysregulation appears to be closely linked with the pathophysiology of major neurodegenerative diseases.

Phytocannabinoid-mediated modulation of ECS activity has shown promising outcomes in various animal models, including reductions in neuroinflammation, attenuation of excitotoxicity, and preservation of cognitive and motor function.The evidence suggests that phytocannabinoids may contribute to neuronal preservation, attenuation of neuroinflammatory cascades, and improvement in motor and cognitive performance in disease models. Moreover, their favorable safety profile and ability to act on multiple molecular pathways position them as promising candidates for disease-modifying interventions.

As interest in cannabinoid pharmacotherapy continues to grow, phytocannabinoids represent a promising, multifaceted class of compounds with the potential to address unmet therapeutic needs in the field of neurodegeneration.”

https://www.mdpi.com/1424-8247/18/6/890

Cannabinol’s Modulation of Genes Involved in Oxidative Stress Response and Neuronal Plasticity: A Transcriptomic Analysis

pubmed logo

“Cannabis sativa is a remarkable source of bioactive compounds, with over 150 distinct phytocannabinoids identified to date. Among these, cannabinoids are gaining attention as potential therapeutic agents for neurodegenerative diseases.

Previous research showed that cannabinol (CBN), a minor cannabinoid derived from Δ9-tetrahydrocannabinol, exhibits antioxidant, anti-inflammatory, analgesic, and anti-bacterial effects.

The objective of this study was to assess the protective potential of 24 h CBN pre-treatment, applied at different concentrations (5 µM, 10 µM, 20 µM, 50 µM, and 100 µM), in differentiated neuroblastoma × spinal cord (NSC-34) cells. Transcriptomic analysis was performed using next-generation sequencing techniques.

Our results reveal that CBN had no negative impact on cell viability at the tested concentrations. Instead, it showed a significant effect on stress response and neuroplasticity-related processes. Specifically, based on the Reactome database, the biological pathways mainly perturbed by CBN pre-treatment were investigated.

This analysis highlighted a significant enrichment in the Reactome pathway’s cellular response to stress, cellular response to stimuli, and axon guidance.

Overall, our results suggest that CBN holds promise as an adjuvant agent for neurodegenerative diseases by modulating genes involved in neuronal cell survival and axon guidance.”

https://pubmed.ncbi.nlm.nih.gov/40563376/

“Aging and neurodegenerative diseases are characterized by a progressive decline in cellular functions, including genomic instability, epigenetic alterations, mitochondrial dysfunction, and chronic inflammation. Our study supports that CBN exerts pleiotropic effects by modulating key molecular pathways involved in oxidative stress response, DNA repair, and neuronal survival. These results suggest that CBN positively modulates the response to cellular damage, stimulating the antioxidant response through the Nrf2 pathway and reducing the sensitivity to programmed cell death, as demonstrated by the regulation of caspases and other genes related to neuronal survival. These effects indicate that CBN may be able to support neuronal health under conditions of chronic stress, a hallmark of neurodegenerative diseases. These findings pave the way for further research into CBN’s therapeutic potential, emphasizing the need for in vivo studies to validate its efficacy and safety profile in neurodegenerative disease models.”

https://www.mdpi.com/2076-3921/14/6/744

Patterns of Use and Patient-Reported Effects of Cannabinoids in People With PD: A Nationwide Survey

pubmed logo

“Background: People with Parkinson’s disease (PD) may use cannabis-based products for symptom management. In France, products containing tetrahydrocannabinol (THC) are prohibited, while cannabidiol (CBD)-products are readily available. However, data on cannabinoid use in French people with PD are lacking. 

Objectives: To identify correlates of the use of cannabis-based products and to document their patterns of use and perceived effects. Methods: A French nationwide online survey was conducted from May to July 2023. Regression analyses helped identify factors associated with current cannabis and CBD use (regardless of their form). Patterns of use and self-reported effects were also documented. 

Results: The study sample comprised 1136 participants, with a median age of 68 years. Six percent (5.9%) and 17.9% reported using cannabis and CBD, respectively. Both substances were associated with better knowledge of cannabinoids and a poor self-perceived household economic situation. The most common routes of cannabis administration were oral ingestion (44.8%) and smoking (41.4%); for CBD, they were oral ingestion (82.8%) and smoking (6.4%). Users reported that cannabis and CBD were very effective for sleep disorders, pain, and rigidity/cramps. The satisfaction level for both substances was also high. 

Conclusion: Cannabis and CBD use among people with PD was associated with better knowledge about cannabinoids and a poor self-perceived household economic situation. Furthermore, users reported high levels of satisfaction for both substances. An enhanced communication with healthcare providers and facilitated access to safe cannabis/CBD products are needed in France to enable people with PD to maximize the benefits of cannabinoids when clinically appropriate.”

https://pubmed.ncbi.nlm.nih.gov/40470397/

“Users commonly reported improvements in sleep disorders, pain, and rigidity/cramps. An enhanced communication with healthcare providers and facilitated access to safe products are needed in France so that people with PD can maximize the benefits of cannabinoids when clinically appropriate.”

https://onlinelibrary.wiley.com/doi/10.1155/padi/2979089

Chemical Profiling of Polyphenolic Fraction of Cannabis sativa L. vr. Kompolti Industrial Inflorescences: Insights into Cannabidiol Neuroprotective Effects in a Cellular Model of Parkinson’s Disease

pubmed logo

“The ultra-high-performance liquid chromatography high-resolution mass spectrometry (LC-ESI-HR-MS/MS) technique was used to characterize the polyphenolic fraction of the hot water infusion (WI) of inflorescences of Cannabis sativa L. Kompolti variety, commercially used for food preparations or cosmetic purposes.

On water infusion extract, we applied a multidisciplinary approach, where NMR, MS, in vitro cell-free and cell-based assays coupled with in silico studies, were used to rationalize at the molecular level the effects of the major component Cannabidiol (CBD), in a model of Parkinson’s disease (PD). The phytochemical analysis by LC-MS/MS led to the tentative identification of many components belonging to different classes of polyphenols, such as phenolic acids, flavonoids, and their glycosides. CBD and cannabidiolic acid (CBDA) were also detected in good amounts in the infusion, together with several minor cannabinoids. In addition, the water infusion WI was evaluated for mineral content, total phenolic content, flavonoid content, and antioxidant capacity by DPPH and FRAP methods.

Notably, our results in a cellular model of PD highlight that CBD protects against rotenone-induced cell death without recovering neuronal morphology. These biological outcomes were rationalized by an in silico approach, where we hypothesize that CBD could influence the cellular response to oxidative stress via its interaction with the Keap1/Nrf2 pathway.

In summary, these results enriched the nutraceutical profile of the water infusion of the inflorescences of the Kompolti cultivar, which demonstrated a high CBD content.

This study could lead to the development of dietary supplements that could help in the management of clinical symptoms related to the antioxidant activity of CBD in the pathophysiology of PD, which remains poorly characterized.”

https://pubmed.ncbi.nlm.nih.gov/40431038/

“In summary, this multidisciplinary approach has provided further insight into the human health properties of C. sativa L. Kompolti infusions. When consumed as a beverage as part of a normal diet, the phytoconstituents could provide health benefits through their antioxidant activity in various diseases and would be promising for protection against environmental stresses that contribute to inflammatory processes, cancer, and other degenerative diseases.”

https://www.mdpi.com/2223-7747/14/10/1473

Preventive beneficial effects of cannabidiol in a reserpine-induced progressive model of parkinsonism

pubmed logo

“Introduction: Parkinson’s disease (PD) is characterized by motor and non-motor symptoms such as tremors, difficulty in initiating movements, depression, and cognitive deficits. The pathophysiology of PD involves a gradual decrease in dopaminergic neurons in the substantia nigra, increased inflammatory parameters, and augmented oxidative stress in this region. Several new therapies aim to promote antioxidant and anti-inflammatory actions, including the use of cannabinoids, particularly cannabidiol (CBD). CBD is a non-psychotomimetic component of Cannabis sativa that acts broadly through several mechanisms.

Objective: The objective of this study was to investigate the potential protective effect of CBD in mice subjected to a low-dose (0.1 mg/kg) repeated reserpine protocol, which encompasses behavioral and neuronal alterations compatible with the progressiveness of PD alterations.

Materials and methods: We used two approaches: (1) concurrent administration during the development of parkinsonism and (2) pre-administration to explore a possible preventive action. The effect of CBD (0.5 mg/kg) on reserpine-induced alterations was investigated on behavioral (catalepsy and vacuous chewing movements) and neuronal (immunolabeling for tyrosine hydroxylase – TH) parameters.

Results: Overall, groups that were treated with CBD and reserpine presented motor alterations later during the protocol compared to the groups that received only reserpine (except for vacuous chewing evaluation in the concomitant treatment). Additionally, CBD attenuated reserpine-induced catalepsy (preventive treatment) and prevented the decrease in TH labeling in the substantia nigra pars compacta in both concurrent and preventive protocols.

Conclusion: Based on these data, we observed a beneficial effect of CBD in motor and neuronal alterations reserpine-induced progressive parkinsonism, particularly after preventive treatment.”

https://pubmed.ncbi.nlm.nih.gov/40406493/

“The data presented here demonstrate that CBD can attenuate the development of reserpine-induced parkinsonism and protect the loss of dopaminergic neuron in the substantia nigra, with better outcomes in the preventive protocol. The overall effect of CBD is to delay the onset of motor deficits, rather than preventing them entirely. More studies are necessary to understand how CBD exhibits this neuroprotective effect.”

https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1539783/full

Efficacy of a Neuroimmune Therapy Including Pineal Methoxyindoles, Angiotensin 1-7, and Endocannabinoids in Cancer, Autoimmune, and Neurodegenerative Diseases

pubmed logo

“Purpose: Recent advancements in psycho-neuro-endocrine-immunology indicate that numerous noncommunicable diseases (NCDs) originate from disruptions in the cytokine immune network, resulting in chronic inflammatory responses. This persistent low-degree inflammation is attributed to deficiencies in crucial endogenous anti-inflammatory neuroendocrine systems, including the pineal gland, the endocannabinoid system, and the angiotensin-converting enzyme 2 / angiotensin 1-7 axis.

The administration of pineal methoxyindoles (melatonin, 5-methoxytryptamine), cannabinoids, and angiotensin 1-7 may entail potential therapeutic benefits for NCDs, particularly for patients who do not respond to conventional treatments.

Patients and methods: This study evaluates the safety and efficacy of a neuroimmune regimen comprising melatonin (100 mg/day at night), 5-methoxytryptamine (30 mg in the early afternoon), angiotensin 1-7 (0.5 mg twice daily), and cannabidiol (20 mg twice daily) in 306 patients with NCDs, including advanced cancer, autoimmune diseases, neurodegenerative disorders, depression, and cardiovascular disease.

Results: The neuroimmune regimen successfully halted cancer progression in 68% of cancer patients, who also reported improvements in mood, sleep, and relief from anxiety, pain, and fatigue. In patients with autoimmune diseases, the treatment effectively controlled the disease process, remarkable in cases of multiple sclerosis. Additionally, positive outcomes were observed in patients with Parkinson’s disease, Alzheimer’s disease, and depression.

Conclusion: Randomized controlled trials are required to assess this therapeutic approach for NCDs that includes endogenous neuroendocrine molecules regulating immune responses in an anti-inflammatory manner.”

https://pubmed.ncbi.nlm.nih.gov/40330271/

“This study highlights the potential of leveraging endogenous molecules to treat NCDs by modulating cell proliferation, inflammation, immune responses, metabolism, and neurological functions. The findings suggest that a neuroimmune regimen incorporating melatonin, angiotensin 1–7, and other bioactive compounds could offer a low-cost, minimally toxic therapeutic approach.”

https://www.dovepress.com/efficacy-of-a-neuroimmune-therapy-including-pineal-methoxyindoles-angi-peer-reviewed-fulltext-article-CIA

Emerging nano-derived therapy for the treatment of dementia: a comprehensive review

pubmed logo

“Dementia includes a variety of neurodegenerative diseases that affect and target the brain’s fundamental cognitive functions. It is undoubtedly one of the diseases that affects people globally. The ameliorating the disease is still not known; the symptoms, however, can be prevented to an extent. Dementia encompasses Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Lewy body dementia, mixed dementia, and various other diseases.

The aggregation of β-amyloid protein plaques and the formation of neurofibrillary tangles have been concluded as the foremost cause for the onset of the disease. As the cases climb, new neuroprotective methods are being developed in the form of new drug delivery systems that provide targeted delivery.

Herbal drugs like Ashwagandha, Brahmi, and Cannabis have shown satisfactory results by not only treating the symptoms but have also been shown to reduce and ameliorate the formation of amyloid plaque formation.

This article explores the intricate possibilities of drug delivery and the absolute use of herbal drugs to target neurodegenerative diseases. The various possibilities of nanotechnology currently available with new emerging techniques are also discussed.”

https://pubmed.ncbi.nlm.nih.gov/40268841/

https://link.springer.com/article/10.1007/s13346-025-01863-3