Administration of Δ9-Tetrahydrocannabinol Following Controlled Cortical Impact Restores Hippocampal-Dependent Working Memory and Locomotor Function

Hypothesis: Administration of the phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) will enhance brain repair and improve short-term spatial working memory in mice following controlled cortical impact (CCI) by upregulating granulocyte colony-stimulating factor (G-CSF) and other neurotrophic factors (brain-derived neurotrophic factor [BDNF], glial-derived neurotrophic factor [GDNF]) in hippocampus (HP), cerebral cortex, and striatum. 

Materials and Methods: C57BL/6J mice underwent CCI and were treated for 3 days with Δ9-THC 3 mg/kg intraperitoneally (i.p.). Short-term working memory was determined using the spontaneous alternations test during exploratory behavior in a Y-maze. Locomotor function was measured as latency to fall from a rotating drum (rotometry). These behaviors were recorded at baseline and 3, 7, and 14 days after CCI. Groups of mice were euthanized at 7 and 14 days. Extent of microgliosis, astrocytosis, and G-CSF, BDNF, and GDNF expression were measured at 7 and 14 days in cerebral cortex, striatum, and HP on the side of the trauma. Levels of the most abundant endocannabinoid (2-arachidonoyl-glycerol [2-AG]) was also measured at these times. 

Results: Δ9-THC-treated mice exhibited marked improvement in performance on the Y-maze indicating that treatment with the phytocannabinoid could reverse the deficit in working memory caused by the CCI. Δ9-THC-treated mice ran on the rotarod longer than vehicle-treated mice and recovered to normal rotarod performance levels at 2 weeks. Δ9-THC-treated mice, compared with vehicle-treated animals, exhibited significant upregulation of G-CSF as well as BDNF and GDNF in the cerebral cortex, striatum, and HP. Levels of 2-AG were also increased in the Δ9-THC-treated mice. 

Conclusion: Administration of the phytocannabinoid Δ9-THC promotes significant functional recovery from traumatic brain injury (TBI) in the realms of working memory and locomotor function. This beneficial effect is associated with upregulation of brain 2-AG, G-CSF, BDNF, and GDNF. The latter three neurotrophic factors have been previously shown to mediate brain self-repair following TBI and stroke.”

https://pubmed.ncbi.nlm.nih.gov/34747647

https://www.liebertpub.com/doi/10.1089/can.2021.0053

The association between marijuana use and oral cancer risk: a systematic review and meta-analysis of case-control studies

“The relationship between marijuana use and oral cancer risk remains controversial, with conflicting evidence from epidemiological studies. This systematic review and meta-analysis aimed to synthesize available evidence on the association between marijuana consumption and oral cancer incidence.

Following PRISMA guidelines, we conducted comprehensive searches across Scopus, PubMed, Web of Science, and Embase databases up to August 2025. We included only case-control studies reporting quantitative risk estimates for marijuana use and histologically confirmed oral cancer (ICD-10 codes C00-C06). Data extraction followed standardized protocols, and study quality was assessed using the Joanna Briggs Institute checklist. Statistical analyses were performed using Comprehensive Meta-Analysis software with random-effects models. Heterogeneity was evaluated using I2 statistics, and publication bias was assessed through funnel plots and Egger’s regression test. Six case-control studies involving 4,686 cases and 10,370 controls were included.

The pooled odds ratio demonstrated a statistically significant inverse association between marijuana use and oral cancer risk (OR = 0.659, 95% CI: 0.500-0.869, p = 0.003, I2 = 47.35).

Subgroup analyses were performed based on the duration of use, gender, and age at initiation of marijuana use; however, no clear dose-response relationship was observed. Sensitivity analyses confirmed robustness of findings, with ORs ranging from 0.599 to 0.708 across iterations. No significant publication bias was detected (Egger’s test p = 0.532). Three individual studies showed statistically significant protective effects, while three others were non-significant.

This meta-analysis suggests marijuana use is associated with reduced oral cancer risk.

However, given methodological limitations, heterogeneity in exposure assessment, and conflicting recent evidence, these findings require cautious interpretation. Future large-scale prospective cohort studies with standardized exposure measurements are essential for definitive conclusions.”


https://pubmed.ncbi.nlm.nih.gov/41236922/

https://www.tandfonline.com/doi/full/10.1080/15332640.2025.2581692

Cannabinoids shift the basal ganglia microRNA m6A methylation profile towards an anti-inflammatory phenotype in SIV-infected rhesus macaques

pubmed logo

“Epitranscriptomic modifications [N6-methyladenosine (m6A)] regulate various diseases, including cancer and inflammation. Despite their functional relevance in neural development and differentiation, the role of m6A modifications in HIV neuropathogenesis is unknown. Using anti-N6-methyladenosine (m6A) antibody-immunoprecipitation and microarray profiling, we identified m6A modifications in miRNAs in basal ganglia (BG) of uninfected (VEH) and SIV-infected Rhesus macaques (RMs) on combination anti-retroviral therapy (ART) and either VEH-treated (VEH/SIV/ART) or THC:CBD-treated (THC:CBD/SIV/ART).

HIV/SIV infection promoted an overall hypomethylated miRNA m6A profile. While THC:CBD did not significantly impact the overall hypomethylated m6A profile, specific miRNAs predicted to target proinflammatory genes showed marked m6A hypomethylation compared to VEH-treated RMs. Additionally, specific BG m6A-modified miRNAs were detected in BG-derived extracellular vesicles. Mechanistically, the DRACH motif in the miR-194-5p seed region was significantly m6A hypomethylated in THC:CBD/SIV/ART RMs. Unlike wild-type, in-vitro transfected m6A-modified miR-194-5p mimics failed to downregulate STAT1 protein expression. Further, compared to VEH/SIV/ART RMs, THC:CBD significantly reduced m6A methylation of 44 miRNAs directly involved in regulating CNS network genes.

Our findings indicate that m6A epi-transcriptomic marks in the seed nucleotides can impair miRNA function and that cannabinoids may preserve it by reducing m6A methylation levels, thus providing a mechanistic explanation underlying their anti-neuroinflammatory effects in HIV/SIV infection.”

https://pubmed.ncbi.nlm.nih.gov/41286161

https://www.nature.com/articles/s42003-025-09049-w

Advances in the Quest for Safe and Effective Drugs That Target the Cannabinoid Receptor Type 1 (CB1)

pubmed logo

“Pain management costs the world billions of dollars each year, and there are limited nonopioid options to treat people suffering from chronic pain. Opioids are excellent analgesics but are liable to abuse and fatal overdoses. This Microperspective summarizes challenges and opportunities pertaining to creating nonopioid drugs that could be used to treat chronic pain, substance abuse, fatty liver, or obesity by targeting the cannabinoid receptor type 1 (CB1).”

https://pubmed.ncbi.nlm.nih.gov/41257001

https://pubs.acs.org/doi/10.1021/acsmedchemlett.5c00402

Acute Effects of Cannabis on Alcohol Craving and Consumption: A Randomized Controlled Crossover Trial

Objective: Cannabis use is strongly linked with heavy drinking and worse alcohol treatment outcomes; however, it may also contribute to decreased alcohol consumption. To date, no human studies have established a causal effect of cannabis on alcohol motivation. The aim of this double-blind crossover randomized clinical trial was to examine dose-dependent acute effects of delta-9-tetrahydrocannabinol (THC) on alcohol craving and consumption.

Methods: Across three experimental days, 157 participants reporting heavy alcohol use and cannabis use two or more times weekly were randomized to smoke cannabis cigarettes containing 7.2% THC, 3.1% THC, or 0.03% THC (placebo), followed by exposures to neutral and personalized alcohol cues and an alcohol choice task for alcohol self-administration. A total of 138 participants completed two or more experimental sessions (mean age, 25.6 years [SD=5.1]; 35% women; 45% racial/ethnic minorities). Primary outcomes included craving, Alcohol Craving Questionnaire-Short Form, Revised (ACQ-SF-R), and an alcohol urge question; the secondary outcome was percent of total available milliliters of alcohol consumed.

Results: There were no significant effects of cannabis on ACQ-SF-R ratings after smoking and during alcohol cue exposure, but 7.2% THC reduced alcohol urge immediately after smoking. Participants consumed significantly less alcohol after smoking cannabis with 3.1% THC and 7.2% THC, reducing consumption by 19% and 27%, respectively.

Conclusions: Following overnight cannabis abstinence, smoking cannabis acutely decreased alcohol consumption compared to placebo. Further controlled research on a variety of cannabinoids is needed to inform clinical alcohol treatment guidelines.”

https://pubmed.ncbi.nlm.nih.gov/41254853

“These data provide preliminary evidence that cannabis may reduce alcohol consumption under some conditions”

https://psychiatryonline.org/doi/10.1176/appi.ajp.20250115

Cannabidiol and ∆9-Tetrahydrocannabinol in Endometriosis: A Literature Review on Therapeutic Applications and Mechanisms

pubmed logo

“Endometriosis is a chronic, inflammatory, and multifactorial disease characterized by the presence of endometrial tissue outside the uterine cavity, often associated with debilitating symptoms. It affects approximately 10% of women of reproductive age and is also related to infertility. Endometriosis can be classified as peritoneal, ovarian, or deep endometriosis, with primary symptoms including chronic pelvic pain, dysmenorrhea, and dyspareunia. Diagnosis and treatment are challenging, with laparoscopy and biopsy of ectopic tissue being the gold standard.

Cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC) are two major cannabinoids found in the Cannabis sativa plant, widely known for their medicinal properties.

An experimental study conducted in rats demonstrated the anti-inflammatory, antioxidant, and antiangiogenic effects of intraperitoneal CBD use in the treatment of endometriosis. The objective of the present study was to conduct a literature review on the therapeutic potential of Cannabidiol (CBD) and ∆9-Tetrahydrocannabinol (THC) in the signs and symptoms of endometriosis. Research on PubMed, Embase, and Scopus platforms was conducted to determine the reproducibility and safety of treatment in humans, including dosage and administration route, as the current use is off-label.”

https://pubmed.ncbi.nlm.nih.gov/41248202


A Balanced Cannabinoids Mixture Protects Neural Stem/progenitor Cells from CoCl2 Induced Injury by Regulating Autophagy and Inflammation: An in Vitro Study

“Although tetrahydrocannabinol (THC) and cannabidiol (CBD) have been individually studied for their neuroprotective roles, few studies have addressed the effects of their balanced 1:1 formulation Satinex (STX) under pathologic conditions like hypoxia. Moreover, the effect of STX on embryonic neural stem/progenitor cells (ENS/PCs) derived from the rat embryonic brain, which are highly vulnerable during early development, remains unexplored.

Considering the pivotal role of hypoxia in numerous neuropathological situations, this study examined the impact of STX on rat ENS/PCs exposed to chemically induced hypoxia.

ENS/PCs were isolated from rat embryos and subjected to hypoxia using 100 µM cobalt (II) chloride hexahydrate (CoCl₂0.6 H₂O) for 48 h. Cytotoxic activity of STX andCoCl2was assessed using the 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2 H-tetrazolium (MTT) assay, while stem cell identity was confirmed via flow cytometry (Nestin, SOX2). STX (0.1 and 0.5 µM) was applied under both normoxic and hypoxic conditions. Expression levels of hypoxia-inducible factor 1-alpha (Hif1α) mRNA, autophagy markers (Beclin-1, microtubule-associated protein 1 light chain 3-II [LC3-II]), and pro-inflammatory proteins nuclear factor kappa B [NF-κB], Toll-like receptor 2 [TLR2], Toll-like receptor 4 [TLR4]) were assessed using reverse transcription polymerase chain reaction (RT-PCR) and western blot techniques following STX treatment.

Based on flow cytometric assays, over 70% of cultivated cells were positive for Nestin and SOX2. Hypoxia significantly reduced cell viability and proliferation, accompanied by increased Hif1α mRNA expression. Treatment with STX (0.1 µM and 0.5 µM) significantly reversed these changes, restoring cell viability and proliferation while reducing Hif1α levels. Hypoxia also elevated autophagy markers (Beclin-1, LC3-II) and pro-inflammatory proteins (NF-κB, TLR2, TLR4), which STX suppressed in a dose-dependent manner.

This study provides novel evidence that STX mitigates hypoxia-induced neural damage by downregulating Hif1α and its downstream inflammatory and autophagic signaling pathways. The use of a clinically relevant cannabinoids mixture and a developmentally sensitive cell model underline the translational potential of balanced THC/CBD formulations in the treatment of hypoxia-related neurodegenerative and neurodevelopmental conditions.”

https://pubmed.ncbi.nlm.nih.gov/41240218

https://link.springer.com/article/10.1007/s12640-025-00770-2

Acute effects of cannabis on core and co-occurring features associated with autism spectrum disorder in adults

pubmed logo

“Pharmacological interventions that treat core and co-occurring features of autism spectrum disorder (ASD) are a persistent unmet need.

As such, use of cannabis to manage ASD features is common in the autistic community. Yet, few studies have examined the acute effects of cannabis on symptoms associated with ASD. Therefore, we measured changes in symptom ratings from before to after cannabis use in a sample of 111 self-identified autistic adults.

Anonymized archival data sourced from the Strainprint® app were analyzed. A subset of tracked information that reflected changes in core and co-occurring symptoms associated with ASD (i.e., Sensory Sensitivity, Repetitive Behaviors, Mental Control, and Negative Affect) were used to assess the impacts of cannabis on symptom severity.

Overall, symptom severity ratings were reduced by 73.09% from before to after cannabis use. More severe symptoms were associated with greater reductions in severity ratings after use.

Higher doses predicted greater reductions in severity of Repetitive Behaviors, Mental Control, and Negative Affect but dose of cannabis used to manage all symptoms remained static across time.

Results from this first empirical examination of the perceived acute effects of cannabis in autistic adults suggest that cannabis provides temporary relief from symptoms associated with ASD.”

https://pubmed.ncbi.nlm.nih.gov/41233406/

“The present study represents the first to demonstrate acute perceived beneficial effects of inhaled cannabis on core and co-occurring symptoms associated with ASD in a large adult sample.”

“These findings indicate that well-powered placebo-controlled trials are warranted to examine the acute effects of various cannabinoids and manipulations of the endocannabinoid system on ASD symptoms.”

“In sum, data from clinical trials of children and adolescents presents an evidence base that supports a continued focus on the impact of CBD on ASD features, while the present data from cannabis-using autistic adults indicates that a sole focus on CBD may not fully capture the potential impact of cannabinoids as a pharmacological intervention for adults with ASD. Thus, additional placebo-controlled clinical trials are needed where THC, CBD, and other non-intoxicating cannabinoids (e.g., cannabigerol), terpenes, and/or medications that modulate the functioning of the endocannabinoid system are administered to autistic adults to determine their relative effects on symptoms associated with ASD.”

https://www.nature.com/articles/s41598-025-23472-3

Sex differences in the capacity of minor phytocannabinoids to attenuate nociceptive insults in HIV-1 Tat-expressing mice

pubmed logo

“Objecives: Approximately 80 % of people living with HIV (PLWH) develop chronic pain and preclinical studies support the involvement of the HIV-1 regulatory protein, trans-activator of transcription (Tat). Phytocannabinoids may attenuate pain in PLWH; however, these data are controversial, and the biological mechanisms are difficult to untangle from psychosocial factors in people.

Methods: We have examined the therapeutic capacity of minor phytocannabinoids to attenuate Tat-promoted visceral hyperalgesia (acetic acid writhing assay) and reflexive nociception (warm water tail flick assay) in transgenic mice. We hypothesized that conditional expression of Tat1-86 in male and female mice [Tat(+) mice] would amplify pain responses compared to controls [Tat(-) mice], and that phytocannabinoids could ameliorate these effects.

Results: Irrespective of sex, Tat(+) mice demonstrated greater visceral pain responses than did Tat(-) controls. The phytocannabinoids, cannabigerolic acid (CBGA), cannabidiol (CBD), and cannabinol (CBN), attenuated Tat-induced visceral pain in both males and females. However, the effectiveness of these cannabinoids varied by sex with CBN being more efficacious in males, while cannabigerol (CBG) alleviated visceral pain only in Tat(+) females. Cannabidiolic acid (CBDA) and cannabidivarin (CBDV) were not effective in either sex. CBGA and CBG were also efficacious in the tail flick test among Tat(-) males and females, but demonstrated only small, sex-dependent effects to reverse Tat-induced nociception. CBD and CBN exerted little-to-no efficacy in this test.

Conclusions: These data suggest that phytocannabinoids exert analgesia for HIV-related pain, potentially aiding in the development of personalized pain management strategies.”

https://pubmed.ncbi.nlm.nih.gov/41221301/

“Overall, PLWH are more vulnerable to the development of chronic pain, resulting in physical disability and a reduced quality of life. The current pharmacological treatments for managing HIV-related pain lack efficacy and are associated with the risk of substance abuse. The medicinal use of non-psychoactive cannabis constituents for pain management might greatly benefit this population which is at a greater risk for opioid addiction and substance abuse.”

https://www.degruyterbrill.com/document/doi/10.1515/nipt-2024-0025/html

Combination CBD/THC in the management of chemotherapy-induced peripheral neuropathy: a randomized double blind controlled trial

pubmed logo

“Introduction: Chemotherapy-induced peripheral neuropathy (CIPN) can greatly impair function, leading to disability or truncated treatment in cancer patients. Previous animal studies show that cannabidiol (CBD) and delta-9- tetrahydrocannabinol (THC) can ameliorate CIPN. This study assessed the effect of combined CBD and THC on CIPN symptoms amongst cancer patients treated with taxane- or platinum-based agents.

Materials and methods: This 12-week randomized, double-blind, placebo-controlled trial included participants with nonmetastatic breast, colorectal, endometrial, or ovarian cancer experiencing grade 2-3 CIPN. The active group received CBD (125.3-135.9 mg) combined with THC (6.0-10.8 mg) in gelcaps. The Quality-of-Life Questionnaire-CIPN twenty-item scale (QLQ-CIPN20) sensory subscale was used as the primary outcome. Additional outcomes assessed pain, sleep, and function. Neurologic exams evaluated touch, pressure, and vibration sense. Following the randomized controlled trial, participants were invited to enroll in a 12-week open-label observational study.

Results: Of 230 participants identified, 124 met eligibility, 54 were enrolled, 46 were randomized, and 43 completed 12 weeks of treatment. This was lower than our goal of 100 randomized participants. The mean age was 60 +/- 9 years, 88% were female, 63% had breast cancer. All participants had completed chemotherapy. The primary analysis showed no differences in outcome measures between active and placebo groups, likely due to sample size. Although an increase in bilirubin (one participant in active group, and one in placebo) and alkaline phosphatase (one participant in active group) was seen, this did not exceed the exit criteria. A secondary analysis showed that the active group experienced greater improvement in the QLQ-CIPN20 measures of sensory impairment relative to placebo (-10.4 (95% -20.5, -0.3), p = 0.044). There was also improvement in light touch and vibration sensation of the feet on neurological exam that approached significance. There was no effect on other measures, including pain, and no between-group differences in side effects. The uncontrolled observational study showed similar results.

Discussion: The primary analysis showed no between-group difference in CIPN symptoms. The secondary analysis indicated that CBD with THC could improve sensory impairment and might increase touch and vibration sense, although these findings require confirmation in a future, more fully powered study. Nonetheless, our results show that combination CBD/THC can be safely delivered to participants with CIPN and suggest that these cannabinoids should be further investigated for this indication.”

https://pubmed.ncbi.nlm.nih.gov/41211445/

“Overall, this study suggests that combination CBD/THC could help with the sensory impairment seen in CIPN. Since the disorder is prevalent and incurs significant hardship, even a modest sensory improvement could enhance patients’ quality of life, given the lack of alternatives.”

https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2025.1590168/full